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Abstract

We herein present a new continuum theory for both isotropic and anisotropic elasto-
plasticity at large strains. The new framework has the following properties: (1) It
is valid for non-moderate large strains, (2) it is valid for both elastic and plastic
anisotropy, (3) its description in rate form is parallel to that of the infinitesimal for-
mulation, (4) it is compatible with the multiplicative decomposition, (5) results in a
similar framework in any stress-strain work-conjugate pair, (6) it is consistent with
the principle of maximum plastic dissipation and (7) does not impose any restriction
on the plastic spin, which must be given as an independent constitutive equation.
Furthermore, when formulated using logarithmic strain measures in the intermediate
configuration: (8) it may be easily integrated using a classical backward-Euler rule
resulting in an additive update. All these properties are obtained simply considering
a plastic evolution in terms of a corrector rate of the proper elastic strain. This new
continuum theory is a natural framework for elastoplasticity of both metals and soft
materials and solves the (so-coined by Simo) rate issue.
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1. Introduction

Many advances in the continuum theory of plasticity came from the understand-
ing of problems found in the algorithmic implementations. Regarding the infinites-
imal case, the theory and the algorithms are efficient and well established [1-3].
The currently favoured algorithmic formulations, either Cutting Plane Algorithms
or Closest Point Projection ones are based on the concept of trial elastic predictor
and subsequent plastic correction [4]. The implementations of the most efficient
closest point projection algorithms perform both phases in just two subsequent sub-
steps [5]. From the 70’s, quite a high number of formulations have been proposed to
extend both the continuum and the computational small strain formulations to the
finite deformation regime. Very different ingredients have been employed in these
formulations, as for example different kinematic treatments of the constitutive equa-
tions, different forms of the internal elastic-plastic kinematic decomposition, different
types of stress and strain measures being used, different internal variables chosen as
the basic ones and, most controversially, different evolution equations for the plastic
flow. The combinations of these ingredients have resulted into very different extended
formulations [6]. However, as a common characteristic, all the formulations are de-
veloped with the principal purpose of preserving as closely as possible the efficiency
and simplicity of the structure of the widely used return mapping schemes of the
infinitesimal theory [7-9]. These computational algorithms obtain the (corrector)
closest point projection of the (predictor) trial stresses onto the elastic domain. The
purpose of this introduction is to explain in detail the difficulties encountered in the
continuum theory of plasticity at large strains, so the relevance and impact of the
solution presented herein for the first time to an issue which solution has been elusive
for decades, can be understood.

The first strategies to model finite strain elastoplasticity were based on both
an additive decomposition of the deformation rate tensor into elastic and plastic
contributions and a hypoelastic relation for stresses [10], see for example [11-14]
among many others. Since the elastic stress relations are directly given in rate
form and do not derive in general from a stored energy potential, some well-known
problems may arise in these rate-form formulations, e.g. lack of objectivity of the
resulting integration algorithms and the appearance of nonphysical energy dissipation
in closed elastic cycles [15, 16]. Incrementally objective integration algorithms [17, 18]
overcome the former drawback; the selection of the proper objective stress rate, i.e.
the corotational logarithmic rate in the so-called self-consistent Eulerian model [19-
21] circumvents the latter one [22]. Even though this approach is still being followed
by several authors [23—-25] and may still be found in commercial finite element codes,
the inherent difficulty associated to the preservation of objectivity in incremental



algorithms makes these models less appealing from a computational standpoint [22,
26].

Shortly afterwards the intrinsic problems of hypoelastic rate models arose, sev-
eral hyperelastic frameworks formulated relative to different configurations emerged
27, 28]. Green-elastic, non-dissipative stresses are derived in these cases from a
stored energy function, hence elastic cycles become path-independent and yield no
dissipation [29]. Furthermore, objectivity requirements are automatically satisfied
by construction of the hyperelastic constitutive relations [4].

In hyperelastic-based models, the argument of the stored energy potential from
which the stresses locally derive is an elastic strain variable that has to be previously
defined from the total deformation. Two approaches are common when large strains
are considered. On the one hand, metric plasticity models propose an additive split
of a given Lagrangian strain tensor into plastic and elastic contributions [30]. On the
other hand, multiplicative plasticity models are based on the multiplicative decom-
position of the total deformation gradient into plastic and elastic parts, frequently
attributed to Lee [31], but which goes back at least to the work of Bilby et al [32].
The main advantage of the former type is that the proposed split is parallel to the
infinitesimal one, where the additive decomposition of the total strain into plastic
and elastic counterparts is properly performed, so these models somehow retain the
desired simplicity of the small strain plasticity models [28, 33, 34]. Another im-
mediate consequence is that these models are readily extended in order to include
anisotropic elasticity and/or plasticity effects [35-39]. However, it is well known
that add-hoc decompositions in terms of plastic metrics do not represent correctly
the elastic part of the deformation under general, non-coaxial elastoplastic deforma-
tions [3, 36, 40, 41], hence its direct inclusion in the stored energy function may be
questioned. For example, it has been found that these formulations do not yield a
constant stress response when a perfectly plastic isotropic material is subjected to
simple shear, a behavior which may be questionable [42]. Furthermore, it has been
recently shown [43] that these formulations may even modify the ellipticity proper-
ties of the stored energy function at some plastic deformation levels, giving unstable
elastic spring-back computations as a result, which seems an unrealistic response. On
the contrary, multiplicative plasticity models are motivated from the micromechanics
of single crystal metal plasticity [44, 45]. From the deformation gradient, the elastic
part accounts for the elastic deformation of the lattice and the corresponding strain
energy of the solid may be considered well defined. As a result, the mentioned plastic
shear and elastic spring back degenerate responses do not occur in these physically
sound models [42, 43].

Restricting now our attention to the widely accepted hyperelasto-plasticity for-



mulations derived from the multiplicative decomposition of the total deformation
gradient [31, 46], further kinematic and constitutive modelling aspects have to be
defined. On one side, even though spatial quadratic strain measures were first em-
ployed [47], they proved to be unnatural in order to preserve plastic incompressibility,
which had to be explicitly enforced in the update of the intermediate placement [48].
The fact that logarithmic strain measures inherit some properties from the infinitesi-
mal ones, e.g. additiveness (only within principal directions), material-spatial metric
preservation, same deviatoric-volumetric projections, etc., along with the excellent
predictions that the logarithmic strain energy with constant coefficients provided for
moderate elastic stretches [49, 50], see also [51, 52], motivated the consideration of the
quadratic Hencky strain energy in isotropic elastoplasticity formulations incorporat-
ing either isotropic or combined isotropic-kinematic hardening [53-57]. The preserva-
tion of the volume during plastic low when using pressure insensitive yield criteria is
automatically accomplished in this case. Moreover, the incremental schemes formu-
lated in terms of logarithmic strains preserve the desired structure of the standard
return mapping algorithms of classical plasticity models [57], hence providing the
simplest computational framework suitable for geometrically nonlinear finite element
calculations.

On the other side, even though the use of logarithmic strain measures in actual
finite strain computational elastoplasticity models has achieved a degree of common
acceptance, a very controversial aspect of the theory still remains. This issue is the
specific form that the evolution equations for the internal variables should adopt
and how they must be further integrated [58], a topic coined as the “rate issue” by
Sim6 [57]. This issue originates, indeed, the key differences between the existing
models. In this respect, the selection of the basic primary variable, whether elastic
or plastic, in which the evolution equation is written, becomes fundamental in a
large deformation context. Evidently, this debate is irrelevant in the infinitesimal
framework, where both the strains and the strain rates are fully additive. Early
works [59-61] suggest that the same strain variable on which the material response
depends, i.e. the elastic strains, should govern the internal dissipation [62]. This
argument seems also reasonable from a numerical viewpoint taking into account that
in classical integration algorithms [7-9] the trial stresses, which are elastic in nature
and directly computed from the trial elastic strains, govern the return, of dissipative
nature, onto the elastic domain during the plastic correction substep. Following this
approach, Simé [57] used a continuum evolution equation for associated plastic flow
explicitly written in terms of the Lie derivative of the left Cauchy—-Green deformation
tensor of the elastic gradient (taken as the basic deformation variable [48]). He then
derived an exponential return mapping scheme to yield a Closest Point Projection



algorithm formulated in elastic logarithmic strain space identical in structure to the
infinitesimal one, hence solving the “rate issue” [57]. However, the computational
model is formulated in principal directions and restricted to isotropy, so arguably that
debated issue was only partially solved. Extensions of this approach to anisotropy
are scarce, often involving important modifications regarding the standard return
mapping algorithms (cf. [62] and references therein).

Instead, the probably most common approach when modeling large strain mul-
tiplicative plasticity in the finite element context lies in the integration of evolution
equations for the plastic deformation gradient, as done originally by Eterovic and
Bathe [54] and Weber and Anand [53]. The integration is performed through an
exponential approximation to the incremental flow rule [1], so these formulations are
restricted to moderately large elastic strains [54, 63], which is certainly a minor issue
in metal plasticity. However we note that it may be relevant from a computational
standpoint if large steps are involved because the trial substep may result in non-
moderate large strains. Unlike Simé’s approach, these models retain a full tensorial
formulation, so further consideration of elastic and/or plastic anisotropy is amenable
[63-71]. However, the consideration of elastic anisotropy in these models has several
implications in both the continuum and the algorithmic formulations, all of them
derived from the fact that the resulting thermodynamical stress tensor in the inter-
mediate configuration, i.e. the Mandel stress tensor [72], is non-symmetric in general.
Interestingly, the symmetric part of this stress tensor is, in practice, work-conjugate
of the elastic logarithmic strain tensor for moderately large elastic deformations,
which greatly simplifies the algorithmic treatment [63] in anisotropic metal plastic-
ity applications. As a result, the model in [63], formulated in terms of generalized
Kirchhoff stresses instead of Kirchhoff stresses and with the additional assumption of
vanishing plastic spin, becomes the natural generalization of the Eterovic and Bathe
model [54] to the fully anisotropic case, retaining at the same time the interesting
features of the small strain elastoplasticity theory and algorithms.

Summarizing, the computational model of Caminero et al. [63] is adequate for
anisotropic elastoplasticity but not for non-moderate large elastic deformations. In
contrast, the Simé formulation [57] is valid for very large elastic strains but not
for phenomenological anisotropic elastoplasticity. In this work, for the first time, we
present and study in detail a novel continuum elastoplasticity framework in full space
description valid for anisotropic elastoplasticity and large elastic deformations con-
sistent with the multiplicative decomposition. The main novelty is that, generalizing
the approach from Simé [57], elastic deformation variables are chosen as the basic in-
ternal variables that govern the local dissipation process. The dissipation inequality
is reinterpreted taking into account that the chosen elastic tensorial variable depends



on the respective internal plastic variable and also on the external one. In this rein-
terpretation we take special advantage of the concepts of partial differentiation and
mapping tensors [73]. The procedure is general, and it may be described in terms
of different stress and strain measures in different configurations, yielding as a result
dissipation inequalities that are fully equivalent to each other. Respective thermo-
dynamical symmetric stress tensors and associative flow rules formulated in terms of
corrector elastic strain rates and general yield functions are trivially obtained in line
with the principle of maximum dissipation. We recover the Simé framework from
our spatial formulation specialized to isotropy employing the additional assumption
of vanishing plastic spin, as implicitly assumed in Ref. [57], see also [76]. As it hap-
pens in the infinitesimal theory, in all the descriptions being addressed the plastic
spin never appears in the associative six-dimensional flow rules being derived, hence
bypassing the necessity of postulating a flow rule for the plastic spin as an additional
hypothesis in the dissipation equation [74]. Special advantage is taken when the
continuum formulation is expressed in terms of the logarithmic elastic strain tensor
[75] and its work-conjugated, symmetric, generalized Kirchhoff stress tensor, both
defined in the intermediate configuration. Then, the continuum formulation mimics
the additive description in rate form of the infinitesimal elastoplasticity theory, the
only differences coming from the additional geometrical nonlinearities arising in a
finite deformation context. Furthermore, the unconventional appearance [57] of the
well-known continuum evolution equation defining plastic flow in terms of the Lie
derivative of the elastic left Cauchy—Green tensor in the current configuration [76]
makes way for a conventional evolution equation written in terms of the rate of the
elastic logarithmic strain tensor in the intermediate placement, hence largely sim-
plifying the continuum formulation and definitively solving the “rate issue” directly
in the space of logarithmic strains. Remarkably, with the present multiplicative
elastoplasticity model at hand, the generally non-symmetric stress tensor that has
traditionally governed the plastic dissipation in the intermediate configuration, i.e.
the Mandel stress tensor, is no longer needed.

The rate formulation that we present herein when expressed using logarithmic
strains in the intermediate placement may be integrated in a very simple incremental
form by immediate use of the backward-Euler rule which results in integration algo-
rithms of similar additive structure to those of the infinitesimal framework. Indeed,
the formulation derived herein, for the first time, was motivated from the anisotropic
finite strain viscoelasticity model based on logarithmic strains and the multiplicative
viscoelastic decomposition of the deformation gradient by Sidoroff that we presented
in Ref. [77]. As a result, both formulations are equivalent in many aspects.

The work in this paper has been developed chronologically before the numerical



implementation already available in Ref. [78], where this paper is referred for details
in the continuum formulation. This paper is devoted to the necessary discussion of
the theoretical aspects and relevant implications of a novel continuum theory that,
just by immediate application of the chain rule, fully matches, in rate form, the ad-
ditive structure of the typical incremental algorithms, and that at the same time is
fully compliant with the well-accepted, physically motivated, multiplicative decom-
position. In this work, all the details of the theory, formulated in different measures
and configurations, are given and compared. Comparisons with other well-established
formulations are also given in this paper. In the already available Ref. [78], we per-
formed the numerical implementation of a new model for kinematic hardening (not
addressed in this paper) without explicit use of a backstress. In Ref. [78], the re-
sults and kinematics derived and explained in this paper, are employed to develop
the algorithm. This algorithm is a plain backward-Euler algorithm over the herein
derived flow rule, written in terms of the corrector logarithmic elastic strain rate.
The simple resulting algorithm, which does not explicitly use exponential mappings,
gives a volume-preserving return mapping scheme in full tensorial form, valid for
anisotropic finite strain responses, preserving the appealing structure of the classical
return mapping schemes of infinitesimal plasticity.

The layout of the remaining part of the paper is as follows. First, we present in
Section 2 the ideas using the infinitesimal freamework. The purpose of this section
is to motivate the formulation and to prepare the parallelism with the finite strain
formulation. Thereafter we present in Section 3 the theory at large strains using
the spatial configuration, performing the parallelism with the infinitesimal theory.
We then particularize the present proposal to isotropy and demonstrate that some
well-known formulations which are restricted to isotropy are recovered as a particular
case from the more general, but at the same time simpler, anisotropic one. Section
4 is devoted to the formulation in the intermediate configuration, where a compari-
son with existing formulations is presented and some difficulties encountered in the
literature are discussed. Section 5 presents the new approach to the problem at the
intermediate configuration, both for quadratic strain measures and for our favoured
logarithmic ones. In that section we also discuss the advantages and possibilities of
the present framework.

2. Infinitesimal elastoplasticity: two equivalent descriptions

In this section we motivate the main concepts that will be relevant in the large
strain formulation employing the simpler infinitesimal description. We show that
a new subtle view of the infinitesimal framework gives a remarkable parallelism to



Figure 1: Rheological Prandtl model to motivate the (six-dimensional) elastoplasticity model, which
possibly includes also nonlinear isotropic hardening.

the large strain formulations. We will show the extremely important conceptual
difference between Eqs. (24) and (25) below, the former being an exercise of the
chain rule and leading to an additive framework at large strains compatible with the
multiplicative decomposition, the latter being a phenomenological assumption lead-
ing to additive ansatzes incompatible with the multiplicative decomposition. Both
approaches happen to be numerically equal only at small strains.

Consider the Prandtl (friction-spring) rheological model for small strains shown
in Figure 1 where the variables € and o, written here in tensor form, are the external
(i.e. measurable) infinitesimal strains and engineering stresses, respectively, and the
tensors €, and €, are internal (i.e. non-measurable) infinitesimal strains. These
variables describe the internal elastic and plastic behaviors. The elastic and plastic
strains are related to the total ones through the identity

E=€.+¢g, (1)

so if we know the total deformation (the external variable) and either one of the
internal variables €, or €,, then the remaining variable is uniquely determined. In
our formulation, we will consider that the variables € and g, are the independent
variables of the dissipative system and that the elastic strains, €., are the dependent
strain variables. Then, the following two-variable dependence emerges for e,

ec(€,6p) =€ — ¢ (2)

Remarkably, this expression also provides the relation between the corresponding
strain rate tensors—to clearly distinguish partial and total differentiations even using
tensors, we use the notation 0 (-) /0(o) for partial differentiation and d (-) /d(o) for
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where [ stands for the fourth-order (symmetric) identity tensor

1
(T%)ija1 = 3 (0ir0j1 + dibjk) (4)

In the chain rule in Eq. (3), we have clearly identified the following partial contri-
butions to the rate of the elastic strain,

Oe. . ..
ée|€'p:0:a—i é=01":é=¢ (5)
¢,=0
and
. Oe. . S . .
Eelico = a—ep . 1€, =-1":¢,=—¢€, (6)

so €. = € — €,, instead of being interpreted as a phenomenological observation, is
now seen as an immediate consequence of the chain rule.

The stored energy in the “spring” of the Pradtl model depicted in Figure 1 is
only a function of the elastic deformation, i.e. ¥ = ¥ (e.). The dissipation rate D,
which must be non-negative, is determined as usual from the stress power P and the
rate of the strain energy W

D=P-¥>0 (7)

This equation can be written, in terms of the total strain rate and the rate of the
elastic strains as
D=oc:é—-0l°:¢,>0 (8)

The tensor ol® is defined as the total gradient

e .__ d\I] (€€>
ol° = = (9)

Following the usual Coleman arguments, as long as the rate of the internal variable
vanishes, i.e. €, = 0, even if € # 0, no dissipation takes place. Then, from Eq. (3)



Ec = Ecle,—0 = € and Eq. (8) reads

Oe,
Oe

D:U:é—ale:ée|€.p0:<a—ae: ):ézO if €,=0 (10)
ép=0

which yields the necessary identity

Oe.
Oe

€ .

o=o =ol°: 19 =gl (11)

é,=0

Interestingly, o and !¢ correspond to a partial and a total derivative, related by the
chain rule—note the abuse of notation V¥ (e.) = ¥ (e, (e,€,)) = V¥ (g,¢,); we keep
the dependencies explicitly stated when the distinction is needed

o — gl Oe. _dV Oe.
- Oe =0 de, Oe =0
_ dV (e.) Oec(e,gp) _ oV (e,e,) _ OV (12)
de, Oe Oe Ol

These definitions based on the concept of partial differentiation and the chain rule
relate both elastic and plastic strains with the external ones from a purely kinematical
standpoint. These concepts and definitions will prove extremely useful in the finite
deformation context, because they will furnish the adequate pull-back and push-
forward mappings between the different configurations employed in the formulations.

Consider now the case for which € = 0 and €, # 0, which consists in the variation
of the other independent variable in the problem. Note that this case corresponds to
a purely internal (dissipative) evolution. Then from Eq. (3) €. = €.|¢=0. The dissi-
pation inequality Eq. (8) must be in this case positive because plastic deformation
(€, # 0) is taking place

D=-0l:16,_, >0 if &,#0 (13)

We arrive at the same expression of Eq. (13) if we consider the most general case
for which both independent variables are simultaneously evolving, i.e. € # 0 and
€, # 0. Hence note that both Egs. (10) and (13) hold if either € = 0 or € # 0, so
only the respective condition over €, is indicated in those equations. Since in the
infinitesimal framework of this section o = ol and &.|:—g = —&,, recall Egs. (11)

10



and (6), just in this case we can write Eq. (13) in its conventional form
D=0c:é,>0 if &, #0 (14)

i.e. the dissipation must be positive when the (six-dimensional) frictional element
in Figure 1 experiences slip. Interestingly, Equations (13) and (14) are two different
views of the same physical concept. Equation (13) is written in terms of the partial
contribution €.|s—¢ to the rate of the dependent (elastic) strain variable e, (e, €,). On
the contrary, Equation (14) is written in terms of the total rate €, of the independent
internal variable €,. However note that they present a clearly different interpretation
which will become relevant in the large strain framework.

2.1. Local evolution equation in terms of €.|e—o

Equation (13) is automatically fulfilled if we choose the following evolution equa-
tion for the elastic strains e,

1
— Eeleg = ”YEN Lol (15)
which yields
ol N:gle . .
D:72k:7>0 if €,#0 (16)

k

where N is a fully symmetric positive definite fourth-order tensor, £ > 0 is the
characteristic yield stress (“sliding resistence”) of the frictional element of Figure
1 and 4 > 0 is the plastic strain rate component which is power-conjugate of the
stress-like variable k, as we see just below. If the yield stress k of the internal
element is constant, the model represents the perfect plasticity case. If the yield
stress k = k() is a monotonically increasing function of the amount of plastic
deformation v = fot Adt, namely dk () /dy = k' () > 0, the model may incorporate
non-linear isotropic hardening effects. We rewrite the dissipation Equation (16) as

1 . . e
D:ﬁ(ale:N:a‘e—kQ)k7+k7>O if ¥>0 (17)

Then, the yield function f(o¢, k) is immediately identified along with the loading-
unloading (“consistency”) conditions

¥>0 = fle%k)=0c“:N:el°*—k*=0 (18)

11



and
flolk)=0:N:ogl -k <0 = 4=0 (19)

so we obtain the plastic dissipation (if any) as given by the (scalar) flow stress times
the (scalar) frictional strain rate D = k74 > 0 for 4 > 0.

Equation (15) may be reinterpreted in terms of the yield function gradient %V f=
N : o!® to give the following associative flow rule for the elastic strains evolution

. 1
— €€|é:0 = ")/EV(ﬁ (20)
where we have introduced the quadratic form
1
p(ole) = 50"6 :N: ol (21)

for the matter of notation simplicity, so f(o!®, k) = 2¢(o!°) —k* = 0 and 1V f = V.

2.2. Local evolution equation in terms of €,

Using the equivalences given in Egs. (11) and (6), the yield function of Eq. (18)
is given in terms of the (external) stress tensor o as

flok)=0:N:o -k =2¢(d)—k*=0 if >0 (22)

Then, the associative flow rule given by Eq. (20), when written in terms of the rate
of the plastic strain €, takes the conventional appereance, cf. Eq. (2.5.6) of Ref. [4]
or Eq. (87) of Ref. [5]
& — Vo
P 7\/o' N:o
As we discuss below, the interpretation given in Eq. (20) greatly facilitates the exten-
sion of the infinitesimal formulation to the finite strain context without modification.

(23)

2.3. Description in terms of trial and corrector elastic strain rates

It is apparent from the foregoing results that, in practice, no distinction is needed
within the infinitesimal framework regarding both the selection of either €. or €, as
the basic deformation variable and the selection of either ol® or o as the basic stress
tensor. However, in what follows, for further extension to finite strains, we keep
on developing the infinitesimal formulation in terms of e, and &!¢, which will let
us take special advantage of the functional dependencies e, (e,e,) = € — ¢, and
ale(e,) = dV (e,) /de..

12



Regarding the evolution of elastic variables, whether strains or stresses, it is con-
venient to introduce the concepts of trial and corrector elastic strain rates in Eq.
(3). Remarkably, these concepts are typically used in the discrete, incremental al-
gorithmic formulations in computational inelasticity, but to the authors knowledge,
they have not been used in the continuum formulations. Then, the closest point pro-
jection computational algorithms were not obtained by an immediate discretization
of their respective continuum formulations. In order to achieve this goal, we define
within the continuum theory

€= Eels o + Eeleco =1 TE + T (24)

where the superscripts tr and ct stand for trial and corrector respectively. Interest-
ingly, the concepts of trial and corrector elastic rates emerge in the finite deformation
multiplicative framework developed below without modification with respect to the
infinitesimal case, so we will be able to directly compare the small and large strain
formulations equation by equation. We note that elastoplasticity models based on
plastic metrics have traditionally followed the same philosophy, but departing from
the standard rate decomposition

E.=6—¢, (25)

which, however, leads to additive Lagrangian formulations [30], [33], [34], [35], [36],
[37], [38], [39] that are generally not consistent with the finite strain multiplicative
decomposition, as it is well-known [40], [42], [41], [43].

For further comparison, we rephrase both the dissipation inequality of Eq. (13)
and the associative flow rule of Eq. (20) as a function of the rate of the corrector
elastic strain as

D=—0cl°: %, >0 if ¥>0 (26)

and

1
AL (27)

Note that the elastic strain correction performed in CPP algorithms and defined in
Eq. (27) enforce the instantaneous closest point projection onto the elastic domain,
i.e. the normality rule in the continuum setting.

In the case we do not consider a potential, then the formulation is usually referred
to as generalized plasticity [79], which is a generalization of nonassociative plasticity

13



typically used in soils [80]. However, we can alternatively take

¢ = 57 Glo") (28)

where the prescribed second-order tensor function G(o'®) defines the direction of
plastic flow. So Eq. (26) reads

1
D:WEJW:G if 4>0 (29)

even though positive dissipation and a fully symmetric linearization of the contin-
uum theory are not guaranteed in this case [1]. Note that G = V¢ for associative
plasticity.

2.4. Maximum Plastic Dissipation

We assume now the existence of another arbitrary stress field ¥ = Xl¢ different
from the actual stress field & = /®, as given in Eq. (11). The dissipation originated
by 3¢ during the same plastic flow process would be—cf. Eq. (26)

Dy =Xl e, if 4>0 (30)

The evolution of plastic flow, e.g. Eq. (27), is said to obey the Principle of Maximum
Dissipation if

D—-Dy >0 (31)
for any admissible stress field X! # !¢, i.e. with f(X!°, k) < 0. Considering the
associative flow rule of Eq. (27), we arrive at

D —Dy=—(cl°—3l¢): ¢, = wz(ale — 3l : Vo (32)

If f(ole, k) = 2¢(a!®) — k? = 0 is a strictly convex function and !¢ is admissible

1
D — Dy :y%(a‘e—z‘e) : v¢:wﬂ(ale—2\e):w >0 (33)
i.e. maximum dissipation in the system is guaranteed (the equal sign would be
possible if non-strictly convex functions are considered, as for example Tresca’s one).
In all the finite strain cases addressed below D — Dy, > 0 if the corresponding
associative flow rule for each case is considered. Indeed, this principle must hold in

14



any arbitrary stress-strain work-conjugate couple, but if guaranteed in one of them,
will hold in any of them by invariance of power.

Box 1: Small strain additive anisotropic elastoplasticity model.

(i) Additive decomposition of the strain € = e, + €,
(ii) Symmetric elastic strain variable e,
(iii) Kinematics induced by e.(e,€,) =€ — ¢,

E. = ée‘épzo + ée‘ézo =g, + e, =€~ Ep

(iv) Symmetric stresses deriving from the strain energy ¥(e,)

dv(e.) o oV(e,e,) ol . Oe.(e, &)

ole = ——% = ol

de, '’ Oe ’ Oe
(v) Evolution equation for associative symmetric plastic flow
. ! .
— g, = ’yEV¢(a‘e) =¢,
¥20, flo k) =26(c1) k> <0, Vf(o* k) =0

Note: Potential W(e,) and function f(o!¢, k) are anisotropic, in general.

3. Formulation of the finite strain anisotropic elastoplasticity theory in
the current configuration

We present in this section a new framework for finite strain anisotropic elasto-
plasticity formulated in the current configuration in which the primary variables are
elastic in nature. Once the corresponding dependencies are identified, the theory
is further developed taking advantage of the previously introduced concepts of par-
tial differentiation, mapping tensors and the trial-corrector decomposition of elastic
variables in rate form. With the exception of the geometrical nonlinearities being
introduced, the formulation yields identical expressions to those derived above for
infinitesimal plasticity.
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3.1. The multiplicative decomposition of the deformation gradient

The multiplicative decomposition [31] splits the deformation gradient into an
elastic gradient and a plastic gradient according to the following equation

X =X.X, (34)

A superimposed rigid body motion given by an orthogonal proper tensor @ results
into

X' = QX = XX} = (QX.)(X,) (35)

Therefore the rigid body motion affects only the “elastic” gradient, leaving the plas-
tic gradient unchanged. An issue frequently commented in the literature is about
the uniqueness of the intermediate configuration arising from X, since any arbi-
trary rotation tensor @ together with its its transpose may be inserted inside the
decomposition such that X = (X.Q) (QT X,), so the decomposition of Eq. (34) is
unique up to a rigid body rotation of the intermediate configuration. However, in
practice, since the plastic deformation X, is path dependent and in computational
elastoplasticity algorithms it is integrated step-by-step, in an incremental fashion
(63, 81], we consider herein that X, and hence the intermediate configuration, are
uniquely determined at all times.

3.2. Trial and corrector elastic deformation rate tensors

Consider the following additive decomposition of the spatial velocity gradient

tensor . ) .
l = XX ! = XeXgl 4 XeXngngl =1, + Xelegl (36)

where we define the elastic and plastic velocity gradients as
l.o=X.X.' and I,:=X,X,* (37)

We note that I, lies in the spatial configuration, whereas 1, operates in the interme-
diate configuration. The deformation rate tensor (the symmetric part of 1) and the
spin tensor (its skew-symmetric part) are

d=sym(l) and w = skw(I) (38)

The elastic and plastic velocity gradient tensors also admit the corresponding decom-
position into deformation rate and spin counterparts, l. = d. +w, and I, = d, +w),,
thereby from Eq. (36)

d=d, +sym (X.1,X_") (39)
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w = w, + skw (X .1,X,") (40)

In general, from Eq. (39) we can consider the elastic deformation rate tensor as a
two-variable function of the deformation rate tensor and the plastic velocity gradient
tensor (including the plastic spin w,) through

d.(d,l,) =d— sym (X.1,X.") (41)

which can be expressed in the following rate-form formats—compare with Eqgs. (3)

and (24)

d, = M

. de

ly=de|y o+ delyo="de+ “d. (42)

lp d=0

de
where M 1,=0

and Mf:’ are mapping tensors [63, 73] which allow us to define
d=0
the following partial contributions to the elastic deformation rate tensor d.

d, := M d=1":d=d (43)

1,=0

and

“d, = M 1, = —% (X.oX,"+X, "D X.):l,=—sym (X1, X.")

(44)

d=0

with (Y O) Z)ijkl = Y;kZﬂ and (Y ] Z)z'jkl = )/;lek-

It is frequently assumed in computational plasticity that the plastic spin vanishes,
namely w, = 0, so its effects in the dissipation inequality are not taken into account.
However, as in the small strain case discussed above, the plastic spin evolves indepen-
dently of the normality flow rules being developed below in terms of corrector elastic
rates, so no additional assumptions over w, will be prescribed by the dissipation
process [74]. The a priori undetermined intermediate configuration, defined by X,,
would become determined once an independent constitutive equation for the plastic
spin w, is specified [1], [69], [70], which is strictly needed in order to complete the
model formulation.

3.3. Dissipation inequality and flow rule in terms of “d,

From purely physical grounds, we know that the strain energy function locally
depends on an elastic measure of the deformation. Hence, it may be expressed in
terms of a Lagrangian-like elastic strain tensor in the intermediate configuration,
c.g. the elastic Green-Lagrange-like strains A, = $(X27X, — I) where I is the
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second-order identity tensor, as
\IJA:\IJA (Ae,a1®a1,a2®a,2) (45)

We assume in the previous equation that the material is orthotropic, where the
vectors @1 and as (and az = a; X ay) define the orthogonal planes in the intermediate
configuration. Related to the material configuration, these directions may rotate as a
consequence of texture evolution [70]. However, the determination of such evolution
requires an additional, experimentally motivated, constitutive equation, additional
to that for w,, see examples in Ref. [70] and references therein. Without loss of the
generality of the present formulation for the symmetric flow, in this work we assume
that the texture of the material is permanent and independent of the plastic spin.
That is, we consider the case for which w, # 0 is given as an additional equation
so that the multiplicative decomposition is completely defined at each instant. We
also consider as a simplifying hypothesis for the current paper, that the material
symmetries remain constant in the intermediate configuration. The consideration of
a constitutive equation for texture evolution based on experimental evidence may be
found, for example in [69], [70]. Subsequently, the material time derivative of the
Lagrangian potential ¥ 4 may be expressed as a function of variables in the current
configuration through

AU, (A) :
‘I’Azigf(l ):Ae:,S'le:Aezsle:XZ@XZ:de:T‘e:de (46)
where we have used the purely kinematical pull-back operation over d. (lying in the
current configuration) that gives A, (lying in the intermediate configuration) —see
[73]

A =xldX, =XT'oX!:d. =M :d, (47)

which provides as a result the also purely kinematical push-forward operation over
the internal elastic second Piola—Kirchhoff stress tensor (lying in the intermediate
configuration)

o d\I]A (Ae)
- dA,

that gives the internal elastic Kirchhoff stress tensor 7!¢ (lying in the current config-
uration)

Sle . (48)

rlo= gl My = sl X7 o X7 = X 8 xT (49)

For further use, we define the elastic Kirchhoff stress tensor 7/° from the elastic
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Almansi strain tensor a, := %(I — X_TX 1), both operating in the current place-
ment, through partial differentiation of the strain energy function expressed in terms
of the corresponding spatial variables. To this end, we first recall from scratch that
different strain tensors, whether material or spatial, are referential (intensive) vari-
ables in the sense that they give local measures of the same (extensive) deformation
with respect to different reference line elements. For example, consider the following
(contravariant) relation between the elastic Almansi strain tensor a. and the elastic
Green-Lagrange-like one A,

da. (Ae; X )

a(A;X)=XTAX'=XToX.T: A, = oA

C A, (50)
where we have intentionally separated the tensor variable dependencies a. (A.; X.)
with a semicolon in order to make explicit the clearly different nature of both depen-
dencies; the left-hand argument includes information about the same elastic defor-
mation process that a. and A, are measuring; the right-hand argument just includes
information about the different referential configuration to which a. and A, are being
referred. We want to remark the conceptual difference existing between the functional
dependence a.(A.; X.) in Eq. (50), which includes information about a single defor-
mation process (hence we use a semicolon), with the functional dependence €, (e, €,)
in Eq. (2), which includes information about two different deformation processes
(hence we use a comma). As it is well known, the material derivative of a, is

a.=XTAX' = a.=a.—1"a, — ad’ = a, + a. (51)

where )
a.=X.TAX'=d, = L. (a.) (52)
is the Lie (or Oldroyd) derivative of a., and @. are the convective ones. The material

time derivative of @, may also be derived in a better form for interpretation, as given
in Eq. (50)

_da (AiX.) 4

n da. (Ae; Xe) « o
0A. 0X.

a. X, =a.+ a (53)

so we can also interpret &e = L. (a.) through partial differentiation as

o 80,6 (Ae; Xe)

A =XToxT.A = 4
a. 8Ae e e ®© e e de (5)
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We can observe in Eq. (53) that, for a given local elastic deformation state defined
by A. and X, the contribution gze = d, to the total rate a. depends on the objective
material strain rate tensor A, only (i.e. a “true” deformation rate keeping the spatial
reference fixed) and that the contribution d@. to the total rate a. depends on the non-
objective deformation rate tensor X. only (i.e. a true spatial reference configuration
rate keeping the deformation fixed). The latter contribution gives rise, indeed, to the
well-known convective terms resulting in lack of objectivity of spatial variable rates.
As also well-known, the Lie (Oldroyd) derivative of ¢ is

ole

r =X.8XT=r, (T‘e) (55)

Consider now the dependencies 71¢(S!¢; X ). The rate of change of 7!¢ with its spatial

reference being fixed may be written in a better form for interpretation as

orle (S‘e; Xe)
dSle

ole

T =X.0X.:8°= : Sle (56)

. . . le o
The previous lines emphasize that the terms 3,6 and 7 are the relevant derivatives

to be used in the constitutive equations because they contain respectively the partial
derivatives of the respective spatial measures a, and 7¢ respect to the change of the
quantities A, and S in the invariant reference configuration.

The interpretation given to a. (A¢; X.) allow us to define the elastic Kirchhoff
stress tensor 7!¢ from the elastic Almansi strain tensor a, via the Eulerian description
of the strain energy function ¥,, as we show next. Since

\IIA (Ae) - \Ija (a'e;Xe) = \Ija (a'e (Ae;Xe) ;Xe) (57)
we have
. . dW 4 . ov, (ae' Xe) o ©
U,(A)=Sl: A, = A, =0 g —gled, =T - X
A ( e) S e dAe e aae a. T e a (a'e; e)

(58)
and we obtain 7/° from a. based on the concept of partial differentiation—see Ref.
[73] for an equivalent result in terms of 7 and a

0V, (ae; X.)
N da,

where we would need to know the explicit dependence of ¥, on both a., and X .. We

Tle

(59)
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observe in Eq. (58) that both ¥4 and ‘i/a represent the change of the elastic potential
U associated to true (i.e. objective) strain rates, whether material or spatial.

Using Eq. (46) and the stress power density per unit reference volume P = 7 : d,
the dissipation inequality written in the current configuration reads

D=P-Uy=P-Vy=r:d—7:d, >0 (60)

where 7 is the spatial Kirchhoff stress tensor, power-conjugate of the deformation
rate tensor d [73]. Using the decomposition given in Eq. (42), Eq. (60) can be
written as

D=7:d—7"°:("d. + “d.) >0 (61)

For the case of I, = 0, i.e. d. = "d,, we have no dissipation

D=1:d—T1°: trde:<T—T‘€:Mge

boo) i d=0 if L,=0  (62)
so we obtain the following definition of the external Kirchhoff stresses 7 in terms of
the internal elastic ones 7!¢, both operating in the current configuration and being
numerically coincident—cf. Eq. (11)

T =Tl; Mge = 7le. 15 = 7l (63)

1,=0

Following analogous steps as in the small strain formulation, the dissipation equa-
tion for the case when [, # 0, i.e. d. = “d., becomes—compare to Eq. (26)

D=—7l°: 4, >0 if 1,#0 (64)

so we can define a flow rule in terms of an Eulerian plastic potential ¢, through—
compare to Eq. (27)

1
Ctde = _'VEVQbT (65)
where 7 is the plastic consistency parameter, k the yield stress and
0¢, (71 X.)
Vo, = —————= 66
¢ orle (66)

is the partial stress-gradient of the Eulerian potential ¢, performed with the spa-
tial referential configuration of its arguments remaining fixed, with ¢, (T'e; X e) be-
ing an isotropic scalar-valued tensor function in its arguments in the sense that
6-(QTQT;QX.) = ¢, (T‘e; Xe), i.e. invariant under rigid body motions—cf. Ref.
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[82] for an alternative, yet equivalent, interpretation. Hence, exactly as in the small
strain case, note that the associative flow rule defined by Eq. (65) enforce a normal
projection onto the elastic domain in a continuum sense and that the plastic spin
does not explicitly take part in that six-dimensional equation, as one would desire
in a large strain context [74]. Clearly, the internal elastic return is governed by the
objective potential gradient V¢, as given in Eq. (66).

Positive dissipation is directly guaranteed in Eq. (64) if we choose—cf. Eq. (21)

o (7% X)) = 17l N, (X)o7l (67)

with N, = N, (X,) standing for an elastic-deformation-dependent symmetric positive
definite fourth-order tensor lying in the same configuration as d, and 7/¢, i.e. the
current configuration. For the reader convenience, we refer to Eq. (122) below, where
the tensor N, (X,) is explicitly defined in terms of its Lagrangian-type logarithmic
counterpart in the intermediate configuration. Thus

9o, (11 X
Vor = 90 {5 Xe) (;T'e ) _ N, : 7l (68)
and Eq. (64) reads —cf. Eq. (16)
e N, : 7l
D="""T }s50 if 4>0 (69)

kQ

The yield function f.(7!¢, k; X,) and the loading/unloading conditions are naturally
identified in this last expression, i.e. —cf. Eq. (19)

f(TI kX)) =20,(714 X)) — k=7l N :7le — k2 =0 if 4>0  (70)
and

=0 if f(TIkX,) =20,(714 X)) -k =7l N.:7l° — k2 <0 (71
whereupon we can write D = k% > 0 for v > 0.

3.4. Dissipation inequality and flow rule in terms of spatial plastic rates
We can re-write Eq. (65) using Eq. (44) as

sym (X 1,X_') = w%wf (72)

22



Box 2: Finite strain multiplicative anisotropic elastoplasticity model. Spatial description.

(i) Multiplicative decomposition of the deformation gradient X = X X,
(ii) Symmetric elastic strain variable a.(A.; X.) = X, TA X!

(iii) Kinematics induced by X (X, X,) = X X'
z>"e =d. = de|lp=0 + de‘d:o ="d. + “d. #d — d,
(iv) Symmetric stresses deriving from the strain energy Va(A.) = Y, (a.; X.)

_ oV, (ae; X.) _x d¥4(A.)
da. ° dA,

€ = rle

|
T 1,=0

T — ‘6. de
X, T=T7"°: Mj

(v) Evolution equation for associative symmetric plastic flow

10¢. (7l X.)
oare 7S

Y20, [Tk Xo) = 20,(71 X)) — k> <0, Af(71k; Xo) =0

_ctde — ’Y

(vi) Additional evolution equation for skew-symmetric plastic flow w,,

Note: Potential W, (a.; X.) and function f,(7/°, k; X.) are anisotropic, in general.

In the infinitesimal framework the basic variable being employed in the evolution
equation, whether elastic or plastic, is irrelevant in practice —cf. Egs. (20) and (23).
However in the finite strain case the evolution of either elastic or plastic variables
require very different treatments, compare Eq. (65) with Eq. (72).

We want also to remark that Eq. (72) is, in essence, Eq. (36.3) of Ref. [1] (note
that our 1, is their L,, see Eq. (34.6) in Ref. [1]), which is further integrated therein
with the plastic spin symmetrizing assumption skw (X .1, X_ ') = 0 by means of—cf.
Table 36.1 and Eqgs. (46.3) and (46.5) in Ref. [1]

1
X 1,X.' = WEWT (73)

with , = X X, L using our notation, in order to arrive at an algorithmic formulation
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based on elastic variables upon considering an exponential mapping approximation,
cf. Eq. (46.9a) in Ref. [1]. Indeed, Eq. (46.3) of Ref. [1] (Eq. (73)) is interpreted
therein to be written in “non-standard form” due to the fact that “the time deriva-
tive is hidden in the definition of the spatial plastic rate” [1], i.e. I, = XPX;1 using
our notation. On the contrary, we herein interpret Eq. (65) to be written in standard
form if one considers corrector elastic rates (whether infinitesimal, Eulerian or La-
grangian) rather than plastic rates, recall the interpretation given above in Eq. (27)
within the small strain setting and see below the description in the intermediate con-
figuration. The reader can compare again Eqgs. (20) and (23) and, in the light of the
above lines see that they both indeed present clearly different views of the physics
behind the same problem. This observation is again parallel to that presented in
large strain viscoelasticity [77] where the use of the novel approach allowed for the
development of phenomenological anisotropic formulations valid for large deviations
from thermodynamic equilibrium.

3.5. Comparison with other formulations which are restricted to isotropy

In isotropic finite strain elastoplasticity formulations it is frequent the case in
which the internal evolution equations in spatial description are expressed in terms
of the Lie derivative of a left Cauchy-Green-like deformation tensor of the elastic
gradient [76, 83], an approach which roots are the works of Sim6 and Miche [48,
57]. An analogous setting is encountered in isotropic finite strain viscoelasticity
and viscoplasticity formulations [83-85]. We take advantage herein of the previous
concepts of partial differentiation and mapping tensors in order to interpret some
terms involving the Lie derivative operator. The left Cauchy—Green-like tensor B, =
X . XT may be considered a function of the deformation gradient tensor X and the
inverse of the plastic right Cauchy—Green deformation tensor C; =X » X . T as—
we separate the arguments by a comma because X and C; ! represent two different
deformation processes, cf. Eq. (2)

B.(X,C,)=XC'X"=X0X:C,' (74)

The partial contribution to the total rate of B, when X is frozen stands for the Lie
derivative of B, relative to the total deformation field [77]

0B,

= - Cl=XoX:C'l=xC'xT-rB
°l x—o 80;1 Cp © Cp Cp LB, (75)

X=0
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where we denote C, ' := dC,'/dt. We also have
LB, =1XC)'X" = -X.d,X] (76)

Consider now the functional dependence I, (I,1,) =1 — X 1,X_' obtained from
Eq. (36). If we additionally assume that the plastic spin in the intermediate config-
uration w, = skw (l,) vanishes, we arrive at

le|l:0;wp:0 - _Xedee_l - %(EBe)Be_l (77)
-1 as the partial (corrector) contribution
to the elastic velocity gradient I when both | = 0 and w, = 0. Indeed, this last
equation is the generalization of, for example, Eq. (7.18) of Ref. [76], where the
simplifying hypothesis of isotropy is previously made to arrive at that result, see

Egs. (7.7) of the same Reference.
The dissipation inequality given in Eq. (64) reads

so we may interpret the term 1(LB.)B,

D=-—7l:d|,g=-T:lfo>0 if 1,#0 (78)

where we have used the fact that 7/¢ = 7 is symmetric. If we additionally prescribe
a vanishing plastic spin, i.e. w, = 0, the dissipation inequality reads

D=—7:lligu-0 =T 3(LB)B;' >0 if d,#0 (79)

which, note, is still valid for anisotropic elastoplasticity. A possible flow rule is

_ 1
—sym (3(LB.)B."') = _Sym(le|l:0;wp:0) == de‘d:o;wpzo = ’VEV@ (80)

which is the general flow rule of Eq. (65) when we add the simplifying assumption
w, = 0. We remark that we have arrived at the same evolution equation in terms of
d. considering either w, # 0 or w, = 0, which means that the return to the elastic
domain is, effectively, independent of the plastic spin w), in the intermediate config-
uration. An additional, independent constitutive equation for w, would be needed
in order to describe the simultaneous evolution of the intermediate configuration.
Finally, if the simplifying assumption of isotropic elasticity is made, B, commutes
with 7 = 7l = 2(d¥ (B.) /dB.)B,. If we additionally assume isotropic plastic
behavior, then B, also commutes with both V¢, = N, : 7le and £B, and we recover
the well-known, although “non-conventional” (recall remark in [57]), local evolution
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equation for B, [48]
!
—sLB, = 7. (Vor)Be (81)

which can be integrated in principal spatial directions, as originally, or applying
a much more efficient integration procedure in the case of the neo-Hookean strain
energy function [87]. The reader can now compare the simplicity of the interpretation
of Eq. (65) of general validity with the arguably more elusive one of Eq. (81), which
is, furthermore, restricted to isotropy.

4. Finite strain anisotropic elastoplasticity formulated in the intermediate
configuration: the common approach in the literature

As aforementioned, in the finite strain case the description of the basic variables
evolution, whether elastic or plastic, require very different treatments, recall Eqs.
(65) and (72) in the spatial description. Models for anisotropic multiplicative elasto-
plasticity are commonly formulated in the intermediate configuration using evolution
equations for internal variables that are plastic in nature, typically the plastic defor-
mation gradient X ,. We briefly discuss this approach in this section.

4.1. Dussipation inequality and flow rule in terms of [,

Consider Eq. (64) written in terms of the plastic velocity gradient I, rather than
in terms of the corrector-type elastic deformation rate tensor d.|4—o = “d,

D=—7lc: M| :1,>0 if 1,#0 (82)
P ld=0

where Mfa
P d:Q
the power-conjugate stress tensor of I, as

is the mapping tensor already defined in Eq. (44). We can define

= %Tle (XX, T+X,TOX,)=XI7Xx T (83)

d=0

and using 7! = X, Sl° X7
== .S (84)

which is the common definition of the non-symmetric Mandel stress tensor in the
intermediate configuration. The dissipation inequality is then

D=E°:1,>0 if 1,#0 (85)
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which is fulfilled automatically employing the following nine-dimensional flow rule—
originally proposed by Mandel [46]

1, =47 Vos (6)

with

(1

¢= = 1ElIF: Nz : EF (87)

where Nz is a positive-definite tensor with major symmetries but lacking minor
symmetries. The added difficulty associated to the integration of this type of non-
symmetric evolution equations for the plastic velocity gradient 1, is apparent [68].
The experimental determination of the yield parameters included in Nz implies the
consideration of additional tests with respect to the case in which a six-dimensional
flow rule is considered. Furthermore, note that the plastic spin w, = skw (l,) is
given from skw(V¢z) in Eq. (86) as an additional assumption [74], which is a
crucial difference with the small strain formulation.

(1

4.2. Dissipation inequality and flow rule in terms of l, with w, = 0

Plastic spin effects can be important in finite strain anisotropic plasticity [69].
However, the constitutive equation for the plastic spin w, = 0 is frequently con-
sidered in Eq. (85). This simplifying assumption leads to the following dissipation

inequality—we define =l = sym(E°)
D=5°d,=E°:d,>0 if d,#0 (88)

and to the following six-dimensional anisotropic flow rule for the plastic deformation
rate tensor—see [66][63] among many others

. 1
l, = XPX;1 =d,= 'VEV(?ES (89)
In the present context, one can now take

18l N, Bl (90)

S

D=4-El:Ng, :E>0 for 4>0 (91)



which, following already customary steps, naturally defines the yield function f=, (ELe, k) =
ELe:NES :ELe—k:2:Oforﬁ>0.

If the hyperelastic response is modelled with the Hencky strain energy function
in the intermediate configuration and the additional restriction to moderately large
elastic deformations is taken, then ELe is, in practice, the work-conjugate stress tensor
of the elastic logarithmic strains tensor lying the intermediate ( “stress-free”) configu-
ration E, = %ln(X TX.) [63]. This consideration greatly facilitates the algorithmic
implementation of this formulation based on the evolution of the plastic gradient
tensor X, by means of Eq. (89), retaining at the same time the main features of the
isotropic logarithmic-strain-based formulation of Ref. [54].

Consider now the isotropic elasticity case, for which elastic strains and stresses
commute. Then, the Mandel stress tensor, as given in Eq. (83), simplifies to the
internal, elastically rotated Kirchhoff stress tensor—we introduce herein the left polar
decomposition of the elastic deformation gradient X, =V R,

gl = xTrlex. T = RV 7'V_'R, = RITR, =: (92)
which is a symmetric tensor. Then we can rephrase the potential ¢z as

EEng:%T‘E:NE:T‘E (93)
with N being fully symmetric, but not necessarily isotropic. Thus—note that this

equation implies w, = 0
. 1
X, = VE(VQST)XP (94)

which is, in essence, the flow rule (originally proposed for isotropic plasticity) of
Weber and Anand [53] and Eterovic and Bathe [54]. However, note that it can also
be used with anisotropic plasticity if restricted to isotropic elasticity [86].

5. Finite strain anisotropic elastoplasticity formulated in the intermediate
configuration: our different proposed approach

We present in this section a new framework for finite strain anisotropic elastoplas-
ticity formulated in the intermediate configuration in which the basic variables are
Lagrangian-like elastic measures consistent with the multiplicative decomposition.
We show that similar functional dependencies to those used within the small strain
theory may be established. The concepts of partial differentiation, mapping tensors
and the trial-corrector elastic decomposition are firstly applied, just for motivation,
to quadratic strains due to its analytical simplicity. An equivalent analysis in terms
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of logarithmic strain measures will allow us to derive a fully Lagrangian elastoplas-
tic formulation in the intermediate configuration with an apparent similarity to the
small strain one.

5.1. Kinematic description in terms of ctA,

From the well-known multiplicative decomposition of Eq. (34), the Green—
Lagrange strains of the total deformation gradient in the reference configuration,
and the Green—Lagrange-like strains of the elastic part in the intermediate configu-
ration are A := 1(XTX —I) and A, := $(X7X, — I). We now recall the ideas
already introduced in the small strain section, and extend them to the large strain
setting. We consider the dependency of elastic strain tensor A. on the independent
external A and internal X, variables. This relation may be written as

A (AX,)=XTA-A)X'=XToX,T:(A-A,) (95)

where the plastic Green—Lagrange strain tensor is placed in the reference config-
uration as A, := (X7 X, — I). The total rate of A, may be written applying
the chain rule of differentiation to the tensor-valued function of two tensor-valued

variables A, (A, X ) as

DA,

) A,
Ae = 0A

: + : X
Xp=0 0X,

A=0

P (96)

where identifying terms, and for further use, we obtain the fourth-order partial gra-
dient tensor—compare to the identity mapping tensor present in Eq. (43)

0A. (A, X,) 0A,

_xT -T — NAe
oA A |y, 9% =M

(97)

X,=0 X,=0
The fourth-order tensor of Eq. (97) is a purely geometrical tensor in the sense that
it is known at any given deformation state in which the Lee factorization is known.
The total rate of A, in Eq. (96) may also be interpreted as the addition of the two
independent ¢rial and corrector contributions

A, = A, + A, ="A, + A, (98)

X,=0

A=0

Hence, and for further comparison with the logarithmic-based formulation, note that
the fourth-order tensor of Eq. (97) furnishes the proper push-forward mapping over
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A, lying in the reference configuration, to give A, (i.e. A, with Xp = 0), lying in
the intermediate configuration.

We remark that Equations (96) and (98), which have been derived from the chain
rule, are completely consistent with the multiplicative decomposition of the defor-
mation gradient, whereas the add-hoc plastic metric decomposition ansatz

A, =A—-A, (99)
is mot consistent with multiplicative plasticity, in general, recall Eq. (95).

5.2. Dissipation inequality and flow rule in terms of natural corrector elastic strain
rates

We now draw our attention to the arguably more natural logarithmic strain frame-
work, which we favour because of the natural properties of those strain measures [49],
[50], [51], [52], [75], [43]. At large strains, both quadratic and Hencky strains are re-
lated by one-to-one mapping tensors [73]. Consider the ezplicit analytical dependence
A, (A, X,) given in Eq. (95). Since the one-to-one, purely kinematical relations
A, =A, (E.) and A= A(E) hold, where E. = ;In(X?X,) and E = { In(X”X)
are the elastic and total material logarithmic strain tensors in their respective con-
figurations, we have also the generally implicit dependence E. (E,X,). Hence, as
we did in Eq. (96), we can decompose the elastic logarithmic strain rate tensor E,
by means of the addition of two partial contributions—cf. Eq. (3)

_ 0E, .. OE,

Ee = - F
OB | o = 0X,

- X,=E.| +E,
X,=0

E=0

(100)

E=0

As in the small strain case, this decomposition, in rate form, is the origin of the op-
erator split which is usually employed in computational inelasticity, but only within
the algorithmic framework. As well known, this operator split consists of a trial
elastic predictor, for which the plastic evolution given by X, is frozen, and an ad-
ditional plastic corrector, for which the external deformation given by E is frozen.
The reader is again referred to Ref. [77] for an algorithmic implementation of this
type in the context of viscoelasticity. Accordingly, we define the trial and corrector
contributions to . within the finite strain continuum theory as—cf. Eqs. (24)

E, = E, + E, = "E,+ “E, (101)

X,=0

E=0

i.e., for a given state of deformation X = X .X, at a given instant, the trial elastic
contribution " E, to the rate of the total elastic logarithmic strain E, depends on
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the total logarithmic strain rate E only (i.e. X, is frozen) and the plastic corrector
contribution “E, to the total elastic logarithmic strain rate E, depends on the total
plastic deformation gradient rate X ponly (i.e. E is frozen).

We emphasize that the rate-form expression given in Eq. (100);, which is valid
in general, particularizes to

E.=FE-FE, (102)

in very few special cases only, e.g. axial loadings along preferred axes in orthotropic
materials. Hence, formulations based on ad-hoc decompositions of the form E, =
E — E, involving the so-called plastic metric (from which Eq. (102) is immediately
derived), cf. [34], [36], [38], [39] and also [41], are not generally in accordance with
the kinematics derived from the continuum formulation using the multiplicative de-
composition, kinematics represented by Eq. (100) in the most general case and that
we use in the present work, without further assumptions or simplifications.

The dissipation inequality written in terms of Lagrangian logarithmic strains can
be seemingly obtained from Eq. (60) as

D=P—-Vp=T:E-T°: E, >0 (103)

where Vg (E.) is the orthotropic strain energy function given in this case in terms
of elastic logarithmic strains—with the simplifying assumption a1 = @, = a3 =0

\I/EI\I’E (Ee,a1®a1,a2®a2) (104)

and 10, (E.)
Tle = Z2E\ e 105
JE. (105)

is the internal generalized Kirchhoff stress tensor that directly derives from Vg (E.),
which is the work-conjugate stress tensor of E. in the most general case [73]
Following the already customary arguments, if X =0 we have E, = E, | elx,—0 =

rE. and . . .
D=T:E-T°:"E,=0 if X,=0 (106)

Then, by use of the typical Coleman arguments, we arrive at—cf. Eq. (11)

OFE, 0V (E,)

T =Tl . ——¢ -
OE |5 _, 0E  |x

(107)

with the fourth-order tensor OE./0E|x _,, present in Eq. (100), furnishing the
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proper mappings between E and "E, and also between T'¢ and T when the inter-
mediate configuration remains fixed, so

OE,

U = "y, =Tl ”Ee =Tl
E X,=0 B oFE X

E=T:E (108)

p=0

On the other side, the dissipation equation whenever X » 7 0 reduces to—cf. Eq.
(26) _
D=-TF:%E, >0 if 4>0 (109)

The following flow rule may be chosen—cf. Eq. (27)
ct .
E.= —VEV¢T (110)

where ¢7(T'¢) is a Lagrangian internal potential function. The convex potential
or(T) = 1T . Ny . T° (111)

for the case in which Np is a positive-definite fully symmetric fourth order tensor,
fulfills automatically the physical requirement:

1
D:WET‘G:NT:T|6>0 if 4>0 (112)

Note that Eq. (110) provokes the instantaneous closest-point projection to the elastic
domain in a continuum sense in the logarithmic space. Furthermore, consistently
with the normality rule emanating from the principle of maximum dissipation [74],
the plastic spin in the intermediate configuration w, does not take explicit part
in Eq. (110). Once the hyperelastic stress-strain relations are assumed and a yield
condition is postulated, the associative flow rule given in Eq. (110) can be integrated
independently of any possible evolution for the plastic spin. In this respect, note that
the direct integration of Eq. (110) in terms of the symmetric elastic strain variable
E, during the corresponding algorithmic corrector phase is completely equivalent to
the (certainly more challenging) integration of the following evolution equation for
X, =1,X, —see second addends in Eq. (100)

OF,
aXp E=0

1
H(dy +wp) X, = _VEV¢T (113)
Once the symmetric flow given by Eq. (110) is integrated, the intermediate config-
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uration, defined by X, remains undetermined by arbitrary finite rotation R, [47],
which may be finally updated during the convergence phase for the computation of
the next incremental load step, as we already did in a similar multiplicative frame-
work for viscoelasticity [77].

The six-dimensional elastic-corrector-type flow rule of Eq. (110) is to be com-
pared to the nine-dimensional plastic-corrector-type flow rule given in Eq. (86) and
its simplified version with w, = 0 of Eq. (89). The conventional appearance of the
elastic-corrector-type flow rule of Eq. (110) for anisotropic elastoplasticity is also to
be compared to the non-conventional appearance of the elastic-corrector-type flow
rule of Eq. (81) for isotropic elastoplasticity (which implicitly assumes w, = 0 as
well). Clearly, Eq. (110) yields the optimal computational parametrization (cf. Ref.
[77]) for anisotropic multiplicative plasticity in the sense that will allow the develop-
ment of a new class of algorithms that exactly preserve the classical return mapping
algorithms typically used in the infinitesimal theory, hence circumventing definitively
the “rate issue” [57]. In this respect, since Uy = Vg (E,), then Eq. (109) reads—
note that the next interpretation is possible due to the choice of E. as the basic
evolution variable

d\I]E (Ee)

—D=Tl: ¢E, =
dE,

DB, = Up <0 if 4>0 (114)
whereupon the dissipation rate is governed in the intermediate (“stress-free”) con-
figuration by the corrector logarithmic strain rate symmetric tensor “E, and its
power-conjugate generalized Kirchhoff stress symmetric tensor T!¢, which follows
the ideas originally postulated by Eckart [59], Besseling [60] and Leonov [61], see
Ref. [62]. Remarkably, with the present multiplicative formulation at hand, the
thermodynamical stress tensor that has traditionally governed the dissipation in the
intermediate configuration along with the non-symmetric plastic deformation rate
tensor I, i.e. the generally non-symmetric Mandel stress tensor Zl¢ of Eq. (84) [72],
[46], see Eq. (85), is not explicitly needed any more.

5.3. The stem yield function

We have seen that the dissipation equation, expressed in terms of correctors elastic
strain rates, may be written in any configuration and also using any arbitrary pair
of work-conjugate stress-strain measures. As it should be expected from physical
grounds, their selections are a matter of preference related to the stored energy
function to be employed and to the configuration where the yield function is to
be defined. It is not clear which one should be the stem configuration, i.e. the
configuration for which the tensor N is considered constant. We coin herein this
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crucial aspect of the theory as the “yield function configuration issue”.

On one hand, it seems reasonable to choose the intermediate configuration as the
stem configuration so invariance is naturally obtained and N does not depend on the
elastic strains or equivalently on the stress tensor. On the other hand, using Ng as
the tensor of constants in the intermediate configuration results in a yield function
in the current configuration in terms of 7/¢ with nonorthogonal preferred directions
and depending of the elastic deformation through N, (X.), cf. Eq. (67).

Based on the understanding of the logarithmic strains evolution as the natural
generalization of the small strains one, see Ref. [75], our preference herein are the
logarithmic strains in the intermediate configuration E. (obtained from the elas-
tic deformation gradient) and their work-conjugate internal generalized Kirchhoff
stresses T1°, namely those governing the dissipation in Egs. (109) and (114). This
work-conjugate stress-strain pair is the same already used in Refs. [63, 69]. Consis-
tently, our preference is to choose Nt as the tensor which have the yield constants
which are associated to the preferred material planes. Since Ny lies in the intermedi-
ate configuration and fr(T'¢, k) is written in terms of (material) generalized elastic
Kirchhoff stresses, its natural push-forward to the current configuration (performed
with the elastic rotations R.) leads to a yield function in terms of the (spatial)
generalized elastic Kirchhoff stresses that preserves the orthogonality of the main
material directions in Ny and that is still constant in the elastically rotated frame.
We further note that when loading in principal material axes or considering elas-
tic isotropy (even with plastic anisotropy) the generalized elastic Kirchhoff stresses
T'® are the rotated elastic Kirchhoff stresses !¢ of Eq. (92) [73]. Furthermore, the
numerical integration of the flow rule of Eq. (110) may be directly performed with
a backward-Euler additive scheme, without explicitly employing exponential map-
pings, and plastic volume preservation is automatically accomplished for models of
plasticity possessing a pressure insensitive yield criterion, hence rendering the most
natural generalization of the classical return mapping algorithms introduced by Krieg
and Key for the infinitesimal theory [77].

Proceeding exactly as in both the small strain case and the finite strain spatial
framework, we identify in Eq. (112) the following yield function fr (T, k) and the
loading /unloading conditions, i.e.

fr(T® k) =200 (T1) —k* =Tl Ny T — k> =0 if 4>0 (115)
and

F=0 if fp(T% k) =20p(T1) —k* =T :Np: Tl — k> <0 (116)
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whereupon we obtain the dissipation in terms of the (characteristic) internal flow
stress £ > 0 and the (characteristic) frictional deformation rate 4 > 0 as

D=k¥>0 for >0 (117)

5.3.1. Change of stress measures and configuration

The yield function may be written also in the reference or current configurations or
as a function of any other stress measure, still being exactly the same yield condition.
For example, the potential ¢7(T'¢) may be expressed in terms of the second Piola—

Kirchhoff stresses S!° of Eq. (48) using—the fourth-order tensor Mge maps both E,

e

to A, and, by power invariance, SI¢ to T'¢ [73]

dA
Tl = §Sle . -
S dE,

— |e . Ae
= §l°: M (118)

so—we note that I\\/[[A has major symmetries and only depends on the spectral de-

composition of the elastlc right stretch tensor U, [73] and that U, does not represent
a change of the reference configuration since T'¢ and S'° lie in the same placement

¢r(T) = 1T . Ny . Tl* = 181 . Ng (U,) : 8¢ = ¢5(S"°,U,) (119)

with ' .
Ng (U.) :== My’ : Ny : M (120)

In the spatial configuration, we can similarly write
(T X)) =7 N (X)) 7o — k2 =0 if 4 >0 (121)

with—the fourth-order tensor I\\/[[“le maps both E. to d. and, by power invariance,
Tl¢ to Tl [73]
N, (X.) = M} (X.): Np: M (X) (122)

However, if, for example, Ny is a fourth-order tensor of yield constants when is
represented in the preferred material directions in the intermediate configuration,
then Ng (U.) = I\\/[[Ae : Np - Mge will change with the elastic strains (which for
the case of metals are assumed to be small and could be arguably neglected for
this purpose), and vice-versa. Note also that once the stem configuration has been
decided, k is the same constant for any case and that the dissipation D = k+ is of
course an invariant value, independent also of the chosen stress/strain couple.
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5.3.2. Other possible yield functions

The form of the yield function of Eq. (115) includes just some of the possibili-
ties. Other more general possibilities may be considered. For example, assume the
potential

¢r = 1T Ny : TV + Ny Tl (123)
where N is a second order tensor. Then Eq. (110) yields
B, = —ﬁ%(NT T + Np) (124)
and Eq. (109) gives
D:f'y%(T'e:NT:TeJrNT:Te) >0 if 4>0 (125)

where we identify the yield function
fr=T°:Np:TCf+ Ny T - k=0 if 4>0 (126)

S0
D=ky>0 for 4>0 (127)

For example if Ny = P9 is the fourth-order deviatoric projection tensor in the
logarithmic strain space (i.e. the same one as in the small strain case) and Ny = 0,
then we recover a von-Mises-like yield surface defined in terms of the stresses T
in the intermediate configuration. For the case of N7 = 0 and N a fourth-order
orthotropic deviatoric tensor, then we obtain a Hill-like yield criterion. For the case
Ny = P9 and N; = o, with a being a scalar, we obtain a Drucker-Prager-like yield
criterion [16, 80]. And so forth. Of course, non-associative flow rules are possible
as well (cf. the equivalent Eqgs. (28) and (29)), but then positive dissipation and
symmetric response linearization are not guaranteed, as it is known [1].

5.4. Determination of model internal parameters

The internal stress tensor T'¢, as given in Eq. (105), is defined in the intermediate
configuration, hence it is not measurable. This means that the specific form of
the constitutive relations, especially of the yield condition, is built up with non-
measurable quantities. We show in this section that the internal parameters of the
selected model can be obtained from experimental testing in any case. We address
the yield function determination as an example.

Consider the internal yield function given in Eq. (115). The corresponding
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external stress tensor is given by Eq. (107). Assume now that we want to determine
the Hill-type yield function parameters, included in the fourth order tensor Ny,
and the internal flow stress k from experimental tests. We consider a uniaxial test
performed over a preferred axis of the corresponding orthotropic material at hand.
Since there are no rotations present, all the strain tensors (elastic, plastic and total)
are coaxial so logarithmic strains are additive, i.e.

X=U=UU, = FE=E.+E, (128)
and the general relation E. (E, X,) can be written for this particular case as
E.=FE-E, (129)

The purely kinematical mapping tensor present in Eq. (107) particularizes to the
fourth-order identity tensor

OFE, O(E—-FE oFE
= 7( ») =—=1I (130)
OF X,=0 oOF X,=0 OF
and the external stress T' during the uniaxial test reduces to
T =T (131)

Therefore, the yield function during the uniaxial test is exactly recast as
(T k)= f(T,k) =T :Np: T — k? (132)

Furthermore, the generalized Kirchhoff stress tensor T', which is work-conjugate of
the logarithmic strain tensor, is coincident with the Kirchhoff stress tensor 7 for
rotationless cases along preferred directions [73]. Thus we also have the identity

f(T k) = f(T,k) = f(r,k) =7 : Np: 7 — k? (133)

and the yield function becomes expressed in terms of stress quantities being fully
measurable. When yielding takes place

T="T, (134)
is known, where 7, includes the corresponding Kirchhoff flow stress components, and

also f(7r,k) =0.

37



It can be shown that similar expressions hold for shear tests within material
preferred planes, where the purely kinematical internal-to-external mapping, relating
internal stresses to external stresses, is always known at each deformation state.
Hence, the fourth order tensor Nt and the internal yield function parameter k, that
define the internal yield function, can be completely determined from the proper
number of measured experimental data.

Finally, this yield function can be used in further calculations involving general
three-dimensional deformation states, because in these cases we always know the
elastic strain E, obtained from the Lee decomposition, and consequently T,

Box 3: Finite strain multiplicative anisotropic elastoplasticity model formulated in terms of loga-
rithmic strains in the intermediate configuration.

(i) Multiplicative decomposition of the deformation gradient X = X . X,
(ii) Symmetric elastic strain variable E, = $ In(X? X )

(ili) Kinematics induced by E.(E, X,)

+ E.

B - B, _vE, B, £ BB,

X,=0

E=0

(iv) Symmetric stresses deriving from the strain energy Vg(E,)
_ dYg(E,) T oVp(E,X,) Tle . OE.(E,X,)

le
T dE, oOFE oE

# Tl

(v) Evolution equation for associative symmetric plastic flow
| .
B, =47 Vor(TF) £ B,
¥20, fr(T k) =26r(T) = k* <0, §fr(T k) =0

(vi) Additional evolution equation for skew-symmetric plastic flow w,,

Note: Potential ¥ (E,) and function fr(T!¢, k) are anisotropic, in general.
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Box 4: Finite strain multiplicative anisotropic elastoplasticity model formulated in terms of
quadratic strains in the intermediate configuration.

(i) Multiplicative decomposition of the deformation gradient X = X X,
(ii) Symmetric elastic strain variable A, = 1(XT X, —I)

(iii) Kinematics induced by A.(A, X,) = X, T(A - A) X!

+ A,

A= A, _ A+ A 2 A- A,

Xp=0

E=0

(iv) Symmetric stresses deriving from the strain energy W4(A.)
_ d¥ 4 (A.) g 0V4(A, X)) _ gl 0A.(A, X))

le —
o dA, 0A 0A

— — ey —T
=X, 'SX

(v) Evolution equation for associative symmetric plastic flow
: 1 .
—tA, = ’yEVQq(S'e) #+ A,
;)/ >0, fs(S‘le) = 2¢S<S|e> — K’ <0, ;YfS(Skak) =0

(vi) Additional evolution equation for skew-symmetric plastic flow w,,

Note: Potential W4 (A,) and function f5(S!¢, k) are anisotropic, in general.

6. Numerical examples

In this section we show some demonstrative simulations. The theory is imple-
mented using a backward-Euler fully implicit algorithm. Most of the key ingredients
of the algorithmic implementation are common to the already available kinematically-
hardened model given in Ref. [78]. In fact, in the absence of a stored energy for the
hardening, the algorithm of Ref. [78] converges to the algorithmic implementation
of the theory given in this paper when using logarithmic strains. Therefore, for the
computational details, we refer the reader to Ref. [78].

6.1. Stress-point example: uniaxial responses

In this example we simulate numerically three cyclic tension-compression uniax-
ial tests along orthotropy material axes in order to show that the logarithmic-based
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model reproduces some basic elastoplastic responses within an incompressible or-
thotropic finite strain context. The integration of the corrector-elastic-type flow rule
of Eq. (110) is performed during plastic steps employing a simple backward-Euler
additive formula, see details in Ref. [78]. A similar integration algorithm is employed
in the context of finite strain viscoelasticity in Ref. [77]. In this elastoplasticity case,
however, the yield condition fulfillment is an additional constraint to be imposed
during local iterations.

We consider an additive uncoupled decomposition for the total strain energy
function ¥y (E.) = W(E?) +U(E?) in terms of its purely deviatoric and volumetric
parts, respectively, where EY = itr(E.)I = 3 In(J.)I is the volumetric elastic strain
tensor, with J, = det X, the elastic Jacobian and I the second-order identity tensor,
and E? = E, — E? is the distortional one, cf. for example Ref. [88]. We define the
following deviatoric strain energy function—the volumetric penalty function is taken
stiff enough so that elastic incompressibility (J. — 1) is numerically imposed during
the computations

WI(E?) = 11(E{)? + pa(Bp)® + s (Eéy)* = 5(E¢))* + 3(E)* + 2(Egy)* MPa (135)

where only its axial components in preferred material directions are needed for this
specific example. In order to complete the definition of the model within preferred
axes X,,, we assume a Hill-type pressure-insensitive yield function with no harden-
ing. The yield function of Eq. (115) simplifies to Eq. (133) with Ny = P : Ny : P9,
where Ny is a fourth-order “diagonal” tensor (when it is represented in matrix no-
tation using the preferred directions) containing independent yielding weight factors
[2] and P¥ is the fourth-order deviatoric projection tensor. Only the axial-to-axial
components of the matrix representation of the tensor Ny are needed for in-axes
loading cases, so we consider the left-upper 3 x 3 matrix blocks of the respective
6 x 6 symmetric matrices. We just take for this representative example

(136)

and also prescribe k = kg = 10 MPa in Eq. (133).
From the strain energy of Eq. (135) we can analytically calculate the preferred
Young moduli [77]

Y, =62/5=12.4MPa , Y, =62/7=28.85TMPa , Y;=31/4=7.75MPa (137)

40



On the other side, Equation (133) with & = ky = 10 MPa and the axial-to-axial
components of Ny given in Eq. (136), specialized for the three tests separately gives
the following yield stresses as result—note additionally that Cauchy stresses o are
coincident with Kirchhoff stresses 7 by incompressibility

0,1 =10MPa |, 0, =5V3=866MPa , 0,5 =2V15="7.746 MPa (138)

We can verify in Figure 2 that the values of Eqgs. (137) and (138), which have been
calculated analytically, are effectively reproduced by the simulations, for which only
the internal model parameters py, po, s, k, (N7)11 = 1, (Ngp)oy = 2 and (N7)s33 = 3
have been defined. We can also observe that a perfect plasticity case, i.e. with no
hardening, is obtained and that both elastic and plastic strains are large.

Uniaxial Axis 1
= = =Uniaxial Axis 2
Uniaxial Axis 3

Figure 2: Cyclic tension-compression uniaxial tests over orthotropy preferred directions. We repre-
sent by o; and FE; the uniaxial components of the Cauchy stress tensor and the logarithmic strain
tensor in the test performed in axis (¢). Perfect plasticity case, i.e. k = ko = const.

6.2. Stress-point example: pure shear responses

In order to completely prove the consistency of our orthotropic model during
homogeneous states of deformation, we analyze in this example the complementary
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cases to those addressed in the preceding example, i.e. three (cyclic) pure shear
tests within the three different preferred planes of a given orthotropic elastoplastic
material. In each numerical test, namely ij = 12,23,31, two preferred material
directions a; and a; are rotated 45° clockwise with respect to the working axes
X; and Xj, respectively. For the test ij, a logarithmic strain value E; = In); is
prescribed in direction X; and a logarithmic strain value E; = —E; (ie. \; =1/\)
is prescribed in direction X;, which yields a pure shear state in the logarithmic strain
space when represented in preferred directions [88]. In addition, we consider a plane
stress condition in direction a;. This model extends to large strains the behavior
obtained within the small strain framework because of the use of logarithmic strains,
predicting a pure shear state of stresses in preferred axes as well. Thus, principal
strain and stress directions are coincident and, as a result, generalized Kirchhoff
stress T' and Kirchhoff stresses T are also coincident.

For these representive shear examples we take—the axial components in preferred
material directions do not take part in this example and are irrelevant

W(Eg) = 2N12(Egm)2 + 2N23(E523)2 + 2N31(Eg31)2 (139)
= L(Ed,)? + 2(Edy)? + 3(Edy;)? MPa (140)
and also k* = k2 = 2/3MPa, (N7)12 = 3, (Ng)o3 = 5 and (Np)3; = 7. Equation

(133) specialized to the pure shear test ij yields—note again that Cauchy stresses o
are coincident with Kirchhoff stresses 7 by incompressibility

2(Np)yo7, = k? (141)
so the yield shear stresses are
1 1 1
Oy12 = g = (0.333 MPa y  Oy23 = \/—1_5 = (0.258 MPa y Oy31 = \/ﬁ = (0.218 MPa

(142)

We can verify in Figure 3 that the elastic shear moduli G;; = p;; (i.e. o0 =

2G;;E;j, no sum) prescribed in Eq. (140) and the flow shear stresses analitically

calculated in Eq. (142) are effectively reproduced by the perfect plasticity cyclic
simulations, for which only internal model parameters have been defined.

7. Conclusion

In this paper we have presented and discussed in detail a novel continuum formu-
lation for elastoplasticity at large strains, and compared the formulation to some of
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Figure 3: Cyclic pure shear tests within orthotropy preferred planes. We represent by o;; and
E;; the shear components in preferred axes of the Cauchy stress tensor and the logarithmic strain
tensor in the test performed in plane (ij). Perfect plasticity case, i.e. k = ko = const.

the best known isotropic and anisotropic formulations in the literature. The present
continuum theory, grounded in the multiplicative decomposition, naturally solves the
“rate issue”; i.e. the flow rule is naturally obtained in terms of a corrector elastic
strain rate which simply results to be a partial contribution to the total rate of such
strain, exactly as in the small strain theory. The new approach results in essentially
the same type of equations in small strains and in large strains, and whether the
latter are integrated in the intermediate or in the spatial configurations. The con-
tinuum framework also results naturally in the typical two stages of the most usual
algorithmic integration of elastoplastic equations: the trial elastic predictor and the
plastic corrector. Hence the development of integration algorithms employing this
proposal is straightforward by the direct use of the backward-Euler integration rule
over the corrector logarithmic strain rate without explicitly employing exponential
mappings. The large strain formulation, being simpler than most proposals in the
literature, is also a general continuum theory, meaning that it is not restricted to
moderate elastic strains and it is not restricted to isotropy. Furthermore, as shown
in the manuscript, and in contrast to most finite strain frameworks, there is no need
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to perform any dissipation hypothesis in the plastic spin, which remains uncoupled
and completely independent of the integration of the symmetric low. Remarkably,
the present formulation may be equally employed in metal plasticity or in the plastic
behavior of soft materials.
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