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Abstract Fixed point theory in fuzzy metric spaces has grown to become
an intensive field of research. The difficulty of demonstrating a fixed point
theorem in such kind of spaces makes the authors to demand extra conditions
on the space other than completeness. In this paper, we introduce a new version
of the celebrated Banach contracion principle in the context of fuzzy metric
spaces. It is defined by means of t-conorms and constitutes an adaptation to
the fuzzy context of the mentioned contracion principle more “faithful” than
the ones already defined in the literature. In addition, such a notion allows us
to prove a fixed point theorem without requiring any additional condition on
the space apart from completeness. Our main result (Theorem 1) generalizes
another one proved by Castro-Company and Tirado. Besides, the celebrated
Banach fixed point theorem is obtained as a corollary of Theorem 1.
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1 Introduction

The issue of providing a fuzzy version of the concept of classical metric became
a field of interest in the second half of the last century. Kramosil and Michalek
contributed to it by introducing in [18] a notion of fuzzy metric space by
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means of the so-called continuous t-norms. Such a notion actually constitutes
an adaptation to the fuzzy context of probabilistic metric spaces due to Menger
(see [19]). Nowadays, the fuzzy metrics defined by Kramosil and Michalek
are commonly managed as the reformulation of them provided by Grabiec in
[8]. Later on, with the aim of retrieving more faithfully the classical notion
of metric to the fuzzy context, George and Veeramani modified in [3] some
axioms of the ones established by the Grabiec’s reformulation to introduce
a new concept of fuzzy metric (we will refer to them as GV -fuzzy metrics).
Moreover, in [3] it was shown that each GV -fuzzy metric induces a (crisp)
topology. This fact can also be demonstrated for fuzzy metrics by attending to
the results provided in [23]. Since then, many research works have been devoted
to the study of both aforementioned concepts of fuzzy metrics (see for instance
[4,5,10,9,12–14,24] or recent publications as [11,16,22,28]). Moreover, many
results demonstrated to GV -fuzzy metrics can be retrieved for fuzzy metrics,
and vice-versa. For instance, in [12] it was proved that GV -fuzzy metrics are
metrizable, which can also be obtained for fuzzy metrics throughout the results
given in [24]. Nevertheless, there exist differences between fuzzy metrics and
GV -fuzzy metrics. For instance, GV -fuzzy metrics are non-completable, in
general, (see [13,14]) in contrast to the case of the concept due to Kramosil
and Michalek.

Coming back to what was aforesaid, fuzzy metric spaces and GV -fuzzy ones
are metrizable. This means that both concepts are topologically equivalent to
classical metrics. So, one can wonder whatever are new in these fuzzy ver-
sions of classical metrics. A topic which substantially differs from the classical
one is the fixed point theory. Indeed, many researchers have tried to addapt
some classical fixed point results to the fuzzy context (see, for instance, [1,
6–8,15,20,21,26,29]). Nevertheless, in such adaptations we usually find some
inconveniences. For instance, how to define a contractive mapping in a fuzzy
metric space has been approached in different ways. Besides, the completeness
of the fuzzy metric is not usually enough to prove a fuzzy version of a classical
fixed point theorem. So, some authors have opted to use a stronger version of
completeness whereas other ones have chosen to demand extra conditions on
the space in order to establish their fixed point theorems.

The aim of this paper is to provide a new version of the celebrated Banach
fixed point theorem in classical metrics to the fuzzy setting. The significance
of our approach to the fixed point theory in fuzzy metrics is twofold. On the
one hand, the contractive condition used can be seen as a faithful adaptation
of the classical one, in such a way that de fuzzy distance between the im-
ages of two elements is greater than the fuzzy distance between such elements
“multiplied” by a constant k ∈]0, 1[ (see Definition 7). On the other hand, our
main theorem does not demand any extra condition to the completeness of the
fuzzy metric space, but a condition on the contraction defined. In addition, it
is demonstrated by means of a counterexample that such a condition cannot be
removed to obtain a fixed point. Moreover, we demonstrate that our contrac-
tive condition generalizes another one already appeared in [27]. Furthermore,
our main theorem generalizes a fixed point theorem proved in [2]. Finally, the
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celebrated Banach fixed point theorem is obtained as a corollary of Theorem
1.

2 Preliminaries

We begin this section recalling the notion of t-norm, which was used to define
the concept of fuzzy metric that we will manage. Our main reference for t-
norms is [17].

Definition 1 A binary operation ∗ on [0, 1] is called a t-norm if, for each
a, b, c ∈ [0, 1], the following four axioms are satisfied:

(T1) a ∗ b = b ∗ a;
(T2) a ∗ (b ∗ c) = (a ∗ b) ∗ c;
(T3) a ∗ b ≤ a ∗ c whenever b ≤ c;
(T4) a ∗ 1 = a.

If in addition, the function ∗ : [0, 1]2 → [0, 1] is continuous, we will say that
∗ is a continuous t-norm.

The most commonly used continuous t-norms in Fuzzy Logic are the mini-
mum t-norm ∗M , given by a∗M b = min{a, b} for each a, b ∈ [0, 1], the product
t-norm ∗P , given by a ∗P b = a · b for each a, b ∈ [0, 1], and the Lukasievicz
t-norm ∗L, given by a ∗L b = max{a+ b− 1, 0} for each a, b ∈ [0, 1]. Moreover,
the largest t-norm is the minimum t-norm and, in addition, ∗M ≥ ∗P ≥ ∗L.

A particular kind of t-norms are the so-called Archimedean t-norms, which
are defined as follows.

Definition 2 A t-norm ∗ is said to be Archimedean if for each a, b ∈]0, 1[

there exists n ∈ N such that a
(n)
∗ < b, where a

(n)
∗ denotes (throughout the

paper) a ∗ · · · ∗(n) a.

Examples of (continuous) Archimedean t-norms are ∗P and ∗L.
An immediate consequence of Definition 2 is that each Archimedean t-

norm satisfies the so-called limit property, i.e. for each a ∈]0, 1[ it is hold

limn a
(n)
∗ = 0. In addition, from such a property we deduce that a ∗ a < a for

each a ∈]0, 1[.
For each t-norm we can find a dual operator of it that is known as t-conorm.

Below we recall such a notion.

Definition 3 A binary operation � on [0, 1] is called a t-conorm if, for each
a, b, c ∈ [0, 1], the following four axioms are satisfied:

(S1) a ∗ b = b ∗ a;
(S2) a ∗ (b ∗ c) = (a ∗ b) ∗ c;
(S3) a ∗ b ≤ a ∗ c whenever b ≤ c;
(S4) a � 0 = a.
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If in addition, the function � : [0, 1]2 → [0, 1] is continuous, we will say that
� is a continuous t-conorm.

The next proposition shows the duality relationship between t-norms and
t-conorms.

Proposition 1 A binary operation � on [0, 1] is a t-conorm if and only if there
exists a t-norm ∗ such that, for each a, b ∈ [0, 1], it is satisfied the following

a � b = 1− ((1− a) ∗ (1− b)) .

In such a case, we will say that � is the dual t-conorm of the t-norm ∗, or
vice-versa.

The dual t-conorms of the previous examples of t-norms are, the maximum
t-conorm �M , given by a �M b = max{a, b} for each a, b ∈ [0, 1], the algebraic
sum t-conorm �P , given by a �P b = a+ b− a · b for each a, b ∈ [0, 1], and the
bounded sum t-conorm �L, given by a�L b = min{a+b, 1} for each a, b ∈ [0, 1],
respectively.

The least t-conorm is the maximum t-conorm and, in addition, �M ≤ ∗P ≤
∗L. So, given a t-conorm � we have that a � b ≥ a, for each a, b ∈ [0, 1].

In the case of t-conorms, the Archimedean ones are defined as follows.

Definition 4 A t-conorm � is said to be Archimedean if for each a, b ∈]0, 1[

there exists n ∈ N such that a
(n)
� > b, where a

(n)
� denotes (throughout the

paper) a � · · · �(n) a.

Similarly to the case of t-norms, it follows directly form the previous defi-
nition that Archimedean t-conorms satisfy the following property.

Proposition 2 Let � be an Archimedean t-conorm. Then, limn a
(n)
� = 1 for

each a ∈]0, 1[. Besides, a � a > a for each a ∈]0, 1[.

Now, we are able to recall the reformulation presented by Grabiec in [8] of
the notion of fuzzy metric introduced by Kramosil and Michalek introduced
in [18].

Definition 5 A fuzzy metric space is an ordered triple (X,M, ∗) such that
X is a (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set on
X × X × [0,∞[ satisfying the following conditions, for all x, y, z ∈ X and
s, t > 0:

(KM1) M(x, y, 0) = 0;
(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y;
(KM3) M(x, y, t) = M(y, x, t);
(KM4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);
(KM5) The assignment M(x, y, ) : [0,∞[→ [0, 1] is a left-continuous function.

In such a case (M, ∗), or simply M , is called a fuzzy metric on X.
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It is well known that each fuzzy metric M on X induces a topology TM on
X which has as a base the following family of open balls

B = {BM (x, r, t) : x ∈ X, r ∈]0, 1[, t > 0[},

where BM (x, r, t) = {y ∈ X : M(x, y, t) > 1− r} for each x ∈ X, r ∈]0, 1[ and
t > 0. Moreover, convergent sequences in fuzzy metric spaces are characterized
as follows.

Proposition 3 Let (X,M, ∗) be a fuzzy metric space. A sequence {xn}n∈N ⊂
X converges to x ∈ X in (X, TM ) if and only if limnM(xn, x, t) = 1 for
each t > 0, i.e. for each ε ∈]0, 1[ and t > 0 there exists n0 ∈ N such that
M(xn, x, t) > 1− ε for each n ≥ n0.

Finally, we recall the notion of Cauchy sequence and completeness in the
context of fuzzy metric spaces (see [3,25]).

Definition 6 A sequence {xn}n∈N in a fuzzy metric space (X,M) is said to
be Cauchy if limn,mM(xn, xm, t) = 1, i.e. if for each ε ∈]0, 1[ and each t > 0
there exists n0 ∈ N such that M(xn, xm, t) > 1− ε for each n,m ≥ n0.

As usual, (X,M, ∗) is called complete if every Cauchy sequence in X is
convergent with respect to TM .

3 The results

We begin this section by introducing the next notion of fuzzy contractive
mapping.

Definition 7 Let (X,M, ∗) be a fuzzy metric space. We will say that a map-
ping T : X → X is a fuzzy k-�-contraction if there exists k ∈]0, 1[ and a
continuous t-conorm � satisfying, for each x, y ∈ X and t > 0, the following
condition:

M(T (x), T (y), t) ≥ k �M(x, y, t). (1)

To illustrate the previous definition we present the following example.
It provides fuzzy k-�-contractions for the most commonly Archimedean t-
conorms used in Fuzzy Logic.

Example 1 Let (X,M, ∗) be a fuzzy metric space and let T : X → X be a
mapping.

T is a fuzzy k-�L-contraction if there exists k ∈]0, 1[ satisfying, for each
x, y ∈ X and t > 0, the following condition:

M(T (x), T (y), t) ≥ min{k +M(x, y, t), 1}. (2)

T is a fuzzy k-�P -contraction if there exists k ∈]0, 1[ satisfying, for each
x, y ∈ X and t > 0, the following condition:

M(T (x), T (y), t) ≥ k +M(x, y, t)− k ·M(x, y, t). (3)



6 Valent́ın Gregori∗, Juan-José Miñana

T is a fuzzy k-�M -contraction if there exists k ∈]0, 1[ satisfying, for each
x, y ∈ X and t > 0, the following condition:

M(T (x), T (y), t) ≥ max{k,M(x, y, t)}. (4)

Obviously, if �1 and �2 are t-conorms, such that �1 ≤ �2, then each fuzzy
k-�2-contraction is a fuzzy k-�1-contraction. So, each fuzzy k-�L-contraction
is a fuzzy k-�P -contraction since �P ≤ �L. Nevertheless, the reciprocal of such
an affirmation is not true as shows the next example.

Example 2 Let (X,M1, ∗L) be the fuzzy metric space, where X = [0, 1] and,
for each x, y ∈ [0, 1], M1(x, y, t) = 1−|x−y| for each t > 0, and M1(x, y, 0) = 0.

Consider the mapping T : [0, 1] → [0, 1] given by T (x) = x
2 , for each

x ∈ [0, 1].
Then, T is a fuzzy 1

2 -�P -contraction. Indeed, for each x, y ∈ X and t > 0,
we have that

M1(T (x), T (y), t) = 1− 1

2
|x− y| = 1

2
+M1(x, y, t)− 1

2
·M1(x, y, t).

However, for each k ∈]0, 1[, T is not a fuzzy k-�L-contraction as we show
below.

Fix k ∈]0, 1[ and let y ∈]0, k]. On the one hand, M(T (0), T (y), t) = 1− y
2 <

1. On the other hand, k +M1(0, y, t) = k + 1− y ≥ k + 1− k = 1. Then,

M1(T (0), T (y), t) < k �LM1(0, y, t).

So, taking into account that k ∈]0, 1[ is arbitrary, we conclude that T is not a
k-�L-contraction.

We are now able to demonstrate the following fixed point result.

Theorem 1 Let (X,M, ∗) be a complete fuzzy metric space and let T : X →
X be a fuzzy k-�-contraction. If � is Archimedean, then T has a unique fixed
point.

Proof Let x ∈ X and define the sequence {xn}n∈N recursively as follows:
x1 = T (x) and xn = T (xn−1), for each n ≥ 2. We will show, by contradiction,
that {xn} is a Cauchy sequence.

First of all, by hypothesis, there exist k ∈]0, 1[ and an Archimedean t-
conorm satisfying, for each x, y ∈ X and t > 0, the following condition:

M(T (x), T (y), t) ≥ k �M(x, y, t). (5)

We claim that, for each t > 0, it is fulfilled M(xn+1, xn, t) ≥ k(n)� , for each
n ∈ N. We will prove such an affirmation by induction.

Fix t > 0. By (5) we have that M(x2, x1, t) ≥ k � M(x1, x, t) ≥ k. So,
M(x2, x1, t) ≥ k and the case n = 1 is satisfied. Let n ∈ N and suppose that
our affirmation is true for each m ≤ n. We will see that it is also fulfilled for
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n+ 1. Again, by (5) we have that M(xn+2, xn+1, t) ≥ k �M(xn+1, xn, t). Fur-

thermore, by induction hypothesis we have that M(xn+1, xn, t) ≥ k(n)� . Then,

M(xn+2, xn+1, t) ≥ k � k(n)� = k
(n+1)
� and so the case n+ 1 is hold. Moreover,

since t > 0 is arbitrary, we conclude that, for each t > 0, M(xn+1, xn, t) ≥
k
(n)
� , for each n ∈ N, as we claimed. Thus, for each n ∈ N, we have that∧
t>0M(xn+1, xn, t) ≥ k(n)� . So, limn

(∧
t>0M(xn+1, xn, t)

)
≥ limn k

(n)
� = 1.

Now, assume that {xn}n∈N is not Cauchy. Then, there exists ε ∈]0, 1[ and
t > 0 such that, for each n ∈ N we can find m(n) > l(n) ≥ n satisfying
M(xm(n), xl(n), t) ≤ 1 − ε. Under this assumption, we construct two subse-
quences {xmn}n∈N and {xln}n∈N of {xn}n∈N, as follows.

Let n = 1. We take l1 = l(1) and let m1 the least integer greater than
l(1) satisfying M(xm1 , xl1 , t) ≤ 1 − ε, i.e. for such elements we have that
M(xm1 − 1, xl1 , t) > 1− ε. The subsequent elements of both subsequences are
picked recursively as follows. For each n ≥ 1, consider mn ∈ N. Then, there
exist m(mn) > l(mn) ≥ mn(> ln) such that M(xm(mn), xl(mn), t) ≤ 1− ε. We
take ln+1 = l(mn) and let mn+1 the least integer greater than l(mn) satisfying
M(xmn+1

, xln+1
, t) ≤ 1− ε.

Then, for each n ∈ N and each s ∈]0, t[, we have that

1− ε ≥M(xmn , xln , t) ≥M(xmn , xmn−1, s) ∗M(xmn−1, xln , t− s) ≥

≥

(∧
t>0

M(xmn , xmn−1, t)

)
∗M(xmn−1, xln , t− s).

Therefore, since the function M(x, y, ) is left-continuous, for each x, y ∈ X,
using the previous inequalities we obtain, for each n ∈ N, the next inequalities

1− ε ≥M(xmn , xln , t) ≥

(∧
t>0

M(xmn , xmn−1, t)

)
∗M(xmn−1, xln , t) ≥

≥

(∧
t>0

M(xmn , xmn−1, t)

)
∗ (1− ε).

So, taking limit as n tends to∞ in the preceding inequality we deduce, by the
continuity of ∗, that

1− ε ≥ lim
n
M(xmn , xln , t) ≥ lim

n

((∧
t>0

M(xmn , xmn−1, t)

)
∗ (1− ε)

)
=

=

(
lim
n

(∧
t>0

M(xmn , xmn−1, t)

))
∗
(

lim
n

(1− ε)
)
≥

≥
(

lim
n
k
(n)
�

)
∗ (1− ε) = 1 ∗ (1− ε) = 1− ε.

Thus, we conclude that limnM(xmn , xln , t) = 1− ε.
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On the other hand, by the contractive condition, we have, for each n ∈ N
and each s ∈]0, t[,

M(xmn , xln , t) ≥M(xmn , xmn+1, s/2)∗M(xmn+1, xln+1, t−s)∗M(xln+1, xln , s/2) ≥

≥M(xmn , xmn+1, s/2) ∗ (k �M(xmn , xln , t− s)) ∗M(xln+1, xln , s/2) ≥

≥

(∧
t>0

M(xmn , xmn+1, t)

)
∗(k �M(xmn , xln , t− s))∗

(∧
t>0

M(xln+1, xml , t)

)
Then, using the same arguments used above we obtain, for each n ∈ N

M(xmn , xln , t) ≥

≥

(∧
t>0

M(xmn , xmn+1, t)

)
∗ (k �M(xmn , xln , t)) ∗

(∧
t>0

M(xln+1, xml , t)

)
.

Again, taking limit as n tends to ∞, the continuity of ∗ and � ensure

1− ε = lim
n
M(xmn , xln , t) ≥ k �

(
lim
n
M(xmn , xln , t)

)
= k � (1− ε).

The fact that � is Archimedean provides the contradiction, since k � (1− ε) >
1− ε.

Hence, {xn}n∈N is a Cauchy sequence and, since (X,M, ∗) is complete there
exists x ∈ X such that {xn}n∈N converges to x, i.e. limnM(xn, x, t) = 1 for
each t > 0. We will see that x is a fixed point of T .

Fix t > 0, then, for each n ∈ N, we have that

M(x, T (x), t) ≥M(x, xn, t/2) ∗M(xn, T (x), t/2)

≥M(x, xn, t/2) ∗ (k �M(xn−1, x, t/2)) .

Taking limits as n tends to ∞ we obtain, by continuity of ∗ and �, the next

M(x, T (x), t) ≥
(

lim
n
M(x, xn, t/2)

)
∗
(
k �
(

lim
n
M(xn−1, x, t/2)

))
= 1∗(k�1) = 1.

Thus, since t > 0 is arbitrary, we conclude that M(x, T (x), t) = 1 for each
t > 0, or equivalently, T (x) = x.

Finally, it remains to prove the uniqueness of x. Suppose that T (y) = y for
some y ∈ X. Then, by the contractive condition we have that, for each t > 0,

M(x, y, t) = M(T (x), T (y), t) ≥ k �M(x, y, t).

So, since � is Archimedean we deduce that M(x, y, t) = 1, for each t > 0,
which implies that x = y.

Observe in the preceding theorem that the condition of being Archimedean
on the t-conorm is used to show that, for any arbitrary x0 ∈ X, the iterative se-
quence {Tn(x0)}n∈N is Cauchy. The next example shows that such a condition
cannot be removed to obtain the conclusion of the theorem.
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Example 3 Consider the tern (X,M,∧), where X = R and M is given, for
each x, y ∈ X, by

M(x, y, t) =

{
1
2 , if t ≤ |x− y|
1, if t > |x− y| ,

for each t > 0, and M(x, y, 0) = 0. (M,∧) is a fuzzy metric on X. Indeed,
it is not hard to check that M satisfies axioms (KM1), (KM2), (KM3) and
(KM5). So, we will see that M also fulfils (KM4).

Let x, y, z ∈ X and t, s > 0. The case t+s > |x−z| implies M(x, z, t+s) = 1
and so the inequality holds. So, assume that t+ s ≤ |x− z|. In such a case, we
just can consider two possibilities:

i) Suppose that t ≤ |x− y| and s ≤ |y − z|. Then,

M(x, z, t+ s) =
1

2
≥ 1

2
∧ 1

2
= M(x, y, t) ∧M(y, z, s).

ii) Suppose that t ≤ |x − y| and s > |y − z| (or t > |x − y| and s ≤ |y − z|).
Then,

M(x, z, t+ s) =
1

2
≥ 1

2
∧ 1 = M(x, y, t) ∧M(y, z, s).

Observe that, the case t > |x−y| and s > |y−z| implies t+s > |x−y|+|y−z| ≥
|x− z|, which has been considered above.

Besides, (X,M,∧) is complete. To show this fact, we will see first that each
Cauchy sequence in (X,M,∧) it is so in R endowed with the usual metric du.

Let {xn}n∈N be a Cauchy sequence in (X,M,∧). Then, for each δ ∈
]
0, 12
[

there exists nδ ∈ N such that M(xn, xm, δ) > 1−δ > 1− 1
2 for each n,m ≥ nδ.

So, by definition of M , |xn − xm| < δ for each n,m ≥ nδ. Then, {xn}n∈N
is a Cauchy sequence in (R, du) and, in consequence, {xn}n∈N converges to
(some) x ∈ R, in (R, du). Therefore, for each ε > 0 we can find nε satisfying
|xn − x| < ε for each n ≥ nε. It remains to prove that {xn}n∈N converges to x
in (X,M,∧).

Let ε ∈]0, 1[ and t > 0. Considering ε′ = t > 0, since {xn}n∈N converges to
x in (R, du), there exists n0 such that |xn−x| < ε′ = t for each n ≥ n0. Then,
by definition of M , we have that M(xn, x, t) = 1 > 1 − ε. Thus, {xn}n∈N
converges to x in (X,M,∧) and, we conclude that (X,M,∧) is a complete
fuzzy metric space.

Define T : X → X, given by T (x) = x + 1 for each x ∈ X. Obvi-
ously, T has not any fixed point. Furthermore, it is not hard to check that
M(T (x), T (y), t) = M(x, y, t), for each x, y ∈ X and t > 0.

Now, consider the continuous t-conorm �M . It is well known that �M is
not Archimedean. Moreover, for each k ∈]0, 12 ] we have that

M(T (x), T (y), t) = M(x, y, t) ≥ k �M M(x, y, t).

Then, T is a fuzzy k-�M -contraction on a complete fuzzy metric space which
has not fixed point.
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We continue our study showing the significance of our main theorem by
using it to generalize a fixed point theorem proved by Castro-Company and
Tirado in [2]. Such a result demanded a restriction on the continuous t-norm
that defines the fuzzy metric under consideration. The mentioned restriction
involves a family of continuous t-norm known as Yager t-norms. We recall this
family of t-norms below.

Given λ ∈]0,∞[, we will say that ∗λY is a Yager t-norm if it is defined, for
each a, b ∈ [0, 1], as follows

a ∗λY b = max
{

1−
(
(1− a)λ + (1− b)λ

) 1
λ , 0

}
.

Now, we are able to recall the fixed point theorem aforementioned.

Theorem 2 (Castro-Company and Tirado [2].) Let (X,M, ∗) be a complete
fuzzy metric space such that ∗ ≥ ∗λY , for some λ ∈]0,∞[, and let T : X → X.
If there exists c ∈]0, 1[ satisfying M(T (x), T (y), t) ≥ 1 − c + cM(x, y, t), for
each x, y ∈ X and t > 0, then T has a unique fixed point.

In addition to demonstrate the previous theorem, the authors in [2] dis-
cussed if such a theorem involves each fuzzy metric, i.e. if for each continuous
t-norm ∗ we can find λ ∈]0,∞[ satisfying ∗ ≥ ∗λY . In this direction, Castro-
Company and Tirado proved that such an affirmation is not true, in general.
Indeed, they provided an example of continuous t-norm for which does not
exist any λ ∈]0,∞[ such that ∗ ≥ ∗λY .

So, Theorem 2 cannot be applied to an arbitrary complete fuzzy metric
space. We will see that the condition on the t-norm posed in such a theorem
can be removed to obtain the result. To this end, observe that the contractive
condition used in Theorem 2 is a particular case of k-�-contraction. Indeed,
such a contraction is actually a k-�P -contraction when we consider k = 1−c ∈
]0, 1[. In this case, on account of expression (3), the contractive condition turns
as follows:

For each x, y ∈ X and t > 0 it is satisfied the next

M(T (x), T (y), t) ≥ (1−c)+M(x, y, t)−(1−c) ·M(x, y, t) = 1−c+cM(x, y, t).

Hence, by Theorem 1 we obtain the next generalization of Theorem 2.

Corollary 1 Let (X,M, ∗) be a complete fuzzy metric space and let T : X →
X. If there exists c ∈]0, 1[ satisfying M(T (x), T (y), t) ≥ 1 − c + cM(x, y, t),
for each x, y ∈ X and t > 0, then T has a unique fixed point.

We finish our work showing that the celebrated Banach fixed point theorem
in classical metric spaces is a corollary of Theorem 1.

Corollary 2 (Classical Banach fixed point theorem.) Let (X, d) be a complete
metric space and let T : X → X be a contractive mapping, i.e. there exists
k ∈]0, 1[ such that

d(T (x), T (y)) ≤ k · d(x, y), for each x, y ∈ X.

Then, T has a unique fixed point.
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Proof Let (X, d) be a complete metric space and let T : X → X be a contrac-
tive mapping. Define, for each x, y ∈ X, M̃d(x, y, t) = max{1− d(x, y), 0} for
each t > 0, and M̃d(x, y, 0) = 0.

It is not hard to check that (X, M̃d, ∗L) is a complete fuzzy metric space.
We are showing that T is a fuzzy k-�P -contraction for c = 1 − k ∈]0, 1[. Let
x, y ∈ X. We distinguish two possibilities:

1. Suppose d(T (x), T (y)) ≥ 1. Then, M̃d(T (x), T (y), t) = 0 for each t > 0. On
the other hand, d(x, y) ≥ k·d(x, y) ≥ d(T (x), T (y)) ≥ 1. So, M̃d(x, y, t) = 0
for each t > 0. Therefore,

M̃d(T (x), T (y), t) = 0 = k �P M̃d(x, y, t), for each t > 0.

2. Assume now d(T (x), T (y)) < 1. Then, M̃d(T (x), T (y), t) = 1−d(T (x), T (y))
for each t > 0. Moreover, M̃d(x, y, t) ≤ 1−d(x, y) for each t > 0. Therefore,
for each t > 0 we have that

M̃d(T (x), T (y), t) = 1−d(T (x), T (y)) ≥ 1−k·d(x, y) = 1−k+k−k·d(x, y) =

= 1− k + k · (1− d(x, y)) = c+ (1− c) · (1− d(x, y)) =

= c+ (1− d(x, y))− c · (1− d(x, y)) = c �P (1− d(x, y)) ≥ c �P M̃d(x, y, t).

Thus, T is a fuzzy c-�P -contraction and, taking into account that �P is Archimedean,
by Theorem 1 we conclude that T has a unique fixed point.
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