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Resum
El problema del Logaritme Discret és un dels problemes que avui dia es conside-

ren com a base per proposar protocols criptogràfics de clau pública (independentment
de si aquests es proposen per al xifratge, signatura o identificació). Entre els sistemes
que utilitzen aquest problema es troba el protocol d’intercanvi públic de claus de Diffie-
Hellman, utilitzat habitualment en multitud d’aplicacions, des de la missatgeria instantà-
nia a l’accés privat a xarxes. Un dels algorismes proposats per resoldre aquest problema,
i, per tant, utilitzable per atacar els protocols criptogràfics que ho consideren, és conegut
com el “mètode del cangur”. En aquest treball s’analitza el comportament d’aquest al-
gorisme davant de claus de diferent tamany, alternatives en la seva implementació que
modifiquen el seu comportament, així com possibles configuracions d’aquest algorisme
analitzant el seu comportament en un atac criptogràfic, comparant el resultat respecte a
la proposta original.

Paraules clau: Criptografia; Logaritme discret; Algorisme del cangur; Pollard lambda;
Diffie-Hellman

Resumen
El problema del Logaritmo Discreto es uno de los problemas que hoy día se conside-

ran como base para proponer protocolos criptográficos de clave pública (independiente-
mente de si estos se proponen para el cifrado, firma o identificación). Entre los sistemas
que utilizan este problema se encuentra el protocolo de intercambio público de claves de
Diffie-Hellman, utilizado habitualmente en multitud de aplicaciones, desde la mensaje-
ría instantánea al acceso privado a redes. Uno de los algoritmos propuestos para resolver
este problema, y por lo tanto utilizable para atacar los protocolos criptográficos que lo
consideran, es conocido como el “método del canguro”. En este trabajo se analiza el com-
portamiento de este algoritmo frente a claves de distinto tamaño, alternativas en su im-
plementación que modifiquen su comportamiento, así como posibles configuraciones de
este algoritmo analizando su comportamiento en un ataque criptográfico, comparando
el resultado respecto la propuesta original.

Palabras clave: Criptografía; Logaritmo discreto; Algoritmo del canguro; Pollard lambda;
Diffie-Hellman

Abstract
The Discrete Logarithm problem is one of the problems that today are considered as a

basis for proposing public-key cryptographic protocols (regardless of whether these are
intended for encryption, signing or identification). Systems using this problem include
the Diffie-Hellman public key exchange protocol, commonly used in many applications,
from instant messaging to private network access. One of the algorithms proposed to
solve this problem, and therefore usable to attack the cryptographic protocols that con-
sider it, is known as the “kangaroo method”. In this paper, we analyze the behavior of
this algorithm against keys of different size, alternatives in its implementation that mod-
ify its behavior, as well as possible configurations of this algorithm analyzing its behavior
in a cryptographic attack, comparing the result with the original proposal.

Key words: Cryptography; Discrete Logarithm; Kangaroo algorithm; Pollard lambda;
Diffie-Hellman
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CHAPTER 1

Introduction

This chapter exposes the reasons that have led us to choose this topic as a final degree
project, analyzing the objectives we pursued throughout the experimentation. We also
state how we have structured this memory that presents and compiles the results ob-
tained.

1.1 Motivation

The appearance of information technology and the massive use of digital communica-
tions has caused the need to encrypt the information that we transmit. The transactions
carried out through the network can be intercepted, and therefore, the security and in-
tegrity of the data must be guaranteed. This challenge has generalized the objectives of
cryptography to protect information and provide security to communications and the
entities that communicate.

The discrete logarithm problem is one of the main problems in cryptography today.
This problem, together with the factorization of integers, covers practically all current
public-key cryptography and is vital in the design of the most common cryptographic
methods. As we will see later in chapter 4, companies, entities, and powers from all over
the world trust their security and privacy in the difficulty of solving this problem.

For this reason, constant work is required by the scientific community to analyze new
ways of attacking and solving this problem. The study of cryptanalysis algorithms is es-
sential to maintain awareness of the protocols’ security and to be able to be forewarned if
a new algorithm is discovered that calls into question cryptographic security worldwide.

Consequently, this final degree project was born due to this need for constant study.
The purpose is to analyze an algorithm designed in the late 1970s, Pollard’s Kangaroo
Algorithm [1], which, although it has been studied from a mathematical and statistical
point of view, has not been analyzed much from a practical point of view.

The evolution of technology, the improvements in the hardware that we have, the
expressiveness of the new programming languages, and many other external factors al-
low that, on certain occasions, the same algorithm that went unnoticed by the scientific
community years ago can become highly relevant today. Crypto-attacks that were once
economically unaffordable have become viable and efficient after a technological break-
through. This work intends to see how this algorithm behaves today in the face of real-
world problems, or at least with cryptographic keys of different sizes.
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2 Introduction

1.2 Objectives

The general objective of this work is to analyze Pollard’s Kangaroo Algorithm from the prac-
tical point of view of a computer scientist engineer instead of doing it from a mathematical-
theoretical point of view.

More specifically, we can state the following objectives:

• To implement the algorithm, taking advantage of the evolution in technology that
has taken place since it was designed.

• To analyze the actual capacity of the implemented algorithm to solve the discrete
logarithm problem, calculating its precision and the maximum size of the problem
that it is capable of solving in a reasonable time (less than a day and a half).

• To develop different versions of the algorithm, including our contribution, with a
new way of proceeding to save computation time.

• To measure times and analyze which combination of hyperparameters is the one
that best solves the problem.

1.3 Memory structure

We present the different developed versions of the algorithm throughout this work, show-
ing the most relevant results and indicating the best combinations of parameters.

In chapter 2, we start with a section of fundamental concepts to refresh some mathe-
matical concepts that it is essential to keep in mind in order to be able to understand the
content of this work. Afterward, in chapter 3, we briefly analyze the state of the art, indi-
cating the advantages and disadvantages of the existing algorithms to solve the discrete
logarithm problem.

Thereafter, in chapter 4, we review some of the practical applications of the discrete
logarithm problem, focusing on the importance of this problem being computationally
hard to solve 1 to ensure robust security. We also see how such security could be compro-
mised using the proposed algorithm.

Later, in chapter 5, we formalize the problem we want to solve using Pollard’s Kangaroo
Algorithm, clearly delimiting it in time and space. Analyzing other algorithms is out of
the scope of this work.

After this, in chapter 6, we present the experimentation carried out. We start with a
zero version of a brute force algorithm to give us an upper bound to start from. Then,
we implement Pollard’s Kangaroo Algorithm, its version of 1978 [1], and later we expose
the newly developed versions that try to optimize and reduce the computation time to
be able to attack bigger problems.

Next, in chapter 7, we present and discuss the results obtained in the experimentation.
Chapter 8 is the culmination of this memory, where we compile the definitive conclusions
of the work carried out.

Finally, in chapter 9, we propose possible improvements to achieve even better re-
sults. These improvements could not be examined for being outside the length of the
project.

1A problem that is difficult to solve at a computational level is one whose solution requires such an
amount of resources of time (computing) or space (memory) that it makes it unfeasible to calculate a solution,
regardless of the algorithm used.



CHAPTER 2

Basic concepts

In this chapter, we try to explain concisely and simply the mathematical concepts and
principles that are basic to be able to understand the work carried out and the complexity
of the problem to be solved. We also present a set of results from number theory that are
especially practical in the field of cryptography.

2.1 Group

In algebra, a group is a pair formed by a finite or infinite set of elements (G) and a binary
operation (⊕), which satisfy the following properties:

• The set is closed under the operation.

• The operation is associative.

• There is an identity element in the group.

• Every element of the group has an inverse with respect to the operation.

A simple example of a group that we will use throughout this work is the cyclic group
Zp, where p is an integer:

◦ Set: G = {0, 1, 2, . . . , p− 1} ◦ Operation: sum modulo p

◦ Properties:

– Closure: ∀a, b ∈ G, (a + b mod p) ∈ G
– Associativity: a + (b + c) ≡ (a + b) + c (mod p)
– Identity element: 0⇔ a + 0 mod p = a
– There is an inverse for every value in Zp: a + (−a mod p) mod p = 0

In the following figure 2.1 we can see the representation of the group Z11:

01
2

3
4

5 6
7

8

9
10

Figure 2.1: Cyclic group Z11 = {0, 1, 2, . . . , 10}
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4 Basic concepts

2.2 Euler’s totient function

Euler’s totient function, denoted ϕ(n), counts the number of positive integers relatively
prime 1 to n, from 1 to n.

For example:

• ϕ(9) = 6 because 1, 2, 4, 5, 7, 8 are relatively prime to 9, but 3, 6, and 9 are not.

gcd(9, 1) = 1 gcd(9, 4) = 1 gcd(9, 7) = 1
gcd(9, 2) = 1 gcd(9, 5) = 1 gcd(9, 8) = 1
gcd(9, 3) = 3 gcd(9, 6) = 3 gcd(9, 9) = 9

• ϕ(11) = 10 because, between 1 and 11, only 11 is not relatively prime to 11.

gcd(11, 1) = 1 gcd(11, 5) = 1 gcd(11, 9) = 1
gcd(11, 2) = 1 gcd(11, 6) = 1 gcd(11,10) = 1
gcd(11, 3) = 1 gcd(11, 7) = 1 gcd(11,11) = 11
gcd(11, 4) = 1 gcd(11, 8) = 1

In fact, if p is a prime number, ϕ(p) = p− 1.

2.3 Multiplicative group of integers modulo p

A multiplicative group of integers modulo p, denoted as Z∗p, is defined as the finite set of
positive integers less than p, which are also relatively prime to p.

That is:
(x ∈ Z∗p)⇔ ((gcd(p, x) = 1) ∧ (x < p) ∧ (x ∈ Z+))

For example:

Z9 ={0, 1, 2, 3, 4, 5, 6, 7, 8} |Z9| = 9
Z∗9 ={1, 2, 4, 5, 7, 8} |Z∗9 | = ϕ(9) = 6

Z11 ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} |Z11| = 11
Z∗11 ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10} |Z∗11| = ϕ(11) = 10

In general:

Zp ={0, 1, . . . , p− 1} |Zp| = p
Z∗p ={x | (gcd(p, x) = 1) ∧ (x < p) ∧ (x ∈ Z+)} |Z∗p| = ϕ(p)

If p is prime:

Zp ={0, 1, . . . , p− 1} |Zp| = p
Z∗p ={1, . . . , p− 1} |Z∗p| = ϕ(p) = p− 1

1Two numbers are relatively prime if and only if their greatest common divisor is 1, that is, if they have
no common divisors.



2.4 Order of a finite group 5

2.4 Order of a finite group

Given a finite group formed by the pair (G,⊗) and α ∈ G, we define:

αk = α⊗ α⊗ · · · ⊗ α︸ ︷︷ ︸
k times

We also define 〈α〉 as the subgroup generated by α, that is:

〈α〉 = {αi : i ≥ 1}

Thus, the order of an element α ∈ G can be defined as the smallest positive integer
such that by raising α to that integer, we obtain the identity element of the group (e):

ord(α) = j, being j the smallest j > 0 such that αj = e

For example, taking the group as (Z∗11, product operation mod 11 2) and α = 2:

〈α〉 = {2, 4, 8, 5, 10, 9, 7, 3, 6, 1} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
ord(α) = 10

Since:

2^1 mod 11 = 2 2^5 mod 11 = 10 2^9 mod 11 = 6 2^12 mod 11 = 4
2^2 mod 11 = 4 2^6 mod 11 = 9 2^10 mod 11 = 1 2^13 mod 11 = 8
2^3 mod 11 = 8 2^7 mod 11 = 7 (starts again) 2^14 mod 11 = 5
2^4 mod 11 = 5 2^8 mod 11 = 3 2^11 mod 11 = 2 ...

10 is the smallest positive integer such that 210 (mod 11) is equal to the identity el-
ement of the product modulo p, that is, to 1. From that point on, the rest of the powers
repeat the cycle 2, 4, 8, 5, . . .

An interesting result from number theory is that for any finite group (G,⊗) and α ∈
G, the following equality holds:

ord(α) = |〈α〉|

2.5 Generator of a group

Given α ∈ Z∗p, if the order of α is ϕ(p) then α is said to be a generator of Z∗p. If Z∗p has a
generator, Z∗p is said to be cyclic.

If α is a generator of Z∗p, then:

Z∗p = {αi : 1 ≤ i ≤ ϕ(p)}

For example:

Given Z∗11 and α = 2, α is generator of the group, since ord(α) = |〈α〉| = |Z∗11| =
ϕ(11) = 10. As we have seen in the previous example, the generator generates the fol-
lowing sequence:

〈α〉 = {2, 4, 8, 5, 10, 9, 7, 3, 6, 1} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} = Z∗11

2Note that 1 is the identity element of the product mod p.



6 Basic concepts

2.6 Discrete logarithm

Let us consider (G,⊗) a cyclic group of order n and α a generator of G. For β ∈ G, the
discrete logarithm of β to base α is the unique integer k, 0 ≤ k ≤ n− 1, such that αk = β.

Unless otherwise specified, algorithms in this work are described in the general set-
ting of a (multiplicatively written) finite cyclic group G of order n with generator α. For
a more concrete approach, the reader may find it convenient to think of G as the mul-
tiplicative group Z∗p of order p− 1, where the group operation is simply multiplication
modulo p.

In this way, the discrete logarithm problem can be summarized as:

“ Given a prime number p, a generator α ∈ Z∗p, and β ∈ Z∗p, find an integer
k ∈ Z∗p such that:

αk mod p = β

”
For example, given p = 11, α = 2, and β = 9, the problem lies in finding an integer k

such that 2k ≡ 9 (mod 11).

In this particular case, the solution to the discrete logarithm would be k = 6, since
26 ≡ 64 ≡ 9 (mod 11).

While normal exponentiation can be solved with its inverse function, that is, by ap-
plying a logarithm, the discrete logarithm is a one-way function. Therefore, there are no
analytical methods to resolve it. We can only use brute force methods or sophisticated
algorithms to compute k.

Pollard’s Kangaroo Algorithm that we study throughout this work tries to solve this
exact problem: given α, β, and p, it tries to find k.

2.7 The Kruskal Count Card Trick

The Kruskal Count or the Kruskal Principle is a probabilistic concept discovered by Martin
Kruskal based on the following idea [2]:

Take a deck of cards, shuffle them, and spread them out on the table, one card after
another, face up. Start with the first card and count as many cards to the right as the
card’s value (ace is worth one and face cards are worth five). Repeat the “walk” from the
new card, continuing until you are near the end of the deck. Drop a coin on the last card
you arrive.

Now comes the exciting part: challenge your friend that if he chooses one of the first
ten cards (different from yours) and follows the same mechanics, he will reach the coin
card. If it happens, you take the coin. You will win 80% of the time [3, 2].

Why does this occur? Every time your friend jumps, he can land on one of the fol-
lowing ten cards. At least one of them will have been a part of your path. Since it has
been shuffled, the next card is equally likely to be any card from the deck, so it has at
least a 1

13 chance of landing on a card of your path. If this happens, since you both use
the same jumping mechanic, you both will follow the same route and end up on the coin
card. That is the key idea, at every jump there is an opportunity for your paths to sync
up, and if there are enough cards, this will happen eventually.
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Let us see the following example3:

J♥ 4♥ 3♥ A♣ 8♠ 3♠ 3♣ 6♥ 9♦ J♣

Q♦ K♣ 8♦ 7♠ 8♣ 10♥ 5♥ 4♠ 2♦ 9♥

K♥ 9♠ K♠ 7♦ A♦ K♦ 8♥ 10♣ A♠ Q♣

6♦ J♠ 6♠ Q♠ Q♥ 4♣ J♦ 9♣ 10♦ 7♣

2♣ 5♠ 2♥ 2♠ 7♥ 4♦ 10♠ A♥ 5♦ 5♣

6♣ 3♦
↑

Place the coin here

Figure 2.2: Kruskal Count example

We are red, and we start with the first card, which is J♥. As it is a face card, we count
five cards to the right and arrive at 3♠. Its value is three, so we count three cards and
arrive at 9♦. We continue like this successively until we reach the 10♠, where we put the
coin.

Our friend is blue, and he chooses a card among the ten in the first row. In this
example, he has chosen the A♣. Therefore, it moves one position to the right and reaches
8♠. Its value is eight, so it jumps to 8♦ and so on until reaching 6♦, a card we had
already passed through. From this moment, our paths have been synchronized, and the
following cards will coincide with ours, thus arriving at the coin.

This same idea, applied in the field of cryptography to find the discrete logarithm, is
what lies behind the algorithm we are studying. John M. Pollard uses a cyclic group as a
deck, with the elements ordered as generated by a generator and a jump size defined by
a function. When the paths collide, we can establish an equation and solve the discrete
logarithm problem.

3The cards’ distribution has been done randomly through the following website: https://faculty.uml.
edu/rmontenegro/research/kruskal_count/kruskal.html

https://faculty.uml.edu/rmontenegro/research/kruskal_count/kruskal.html
https://faculty.uml.edu/rmontenegro/research/kruskal_count/kruskal.html




CHAPTER 3

State of the art

Once we have established the mathematical background and formally defined the dis-
crete logarithm problem in chapter 2, we can analyse the problem’s state of the art. In
this chapter, we present the complexity of the problem under consideration and the ad-
vantages and disadvantages of the main algorithms that have been proposed to try to
solve the discrete logarithm problem. A detailed description of the operation of each
algorithm is beyond the limits of this work, and we leave it proposed for the interested
reader. Some recommended sources are: [4, 5, 6, 7, 1].

The discrete logarithm is a problem whose time complexity is linear with respect to
the group’s order. Let n be that group’s order. An exhaustive-search implementation of
the solution would have an asymptotic cost of O(n).

Although this complexity is defined in the literature as linear, in practice this descrip-
tion is not very useful since the group order is usually an extraordinarily large number.
Therefore, the problem size is generally defined as the size in bits that the group order
occupies. Let t be this size, it would be defined as t = dlog2(n)e.

Assuming as the group the multiplicative group of integers modulo a prime p, the
order of the group would be n = p− 1 and t = dlog2(p− 1)e. Thus, unless otherwise
specified, throughout this work we define t as the problem size and the time complexity
of the discrete logarithm as O(2t), exponential with respect to the size of the modular
value, i.e., with respect to the bit size of p. There is no known algorithm for conventional
computers that is able to solve the discrete logarithm in polynomial time with respect to
the size of the modular value.

The known algorithms (whose complexity is mainly exponential) capable of solving
the discrete logarithm problem can be categorized as follows:

• Generic algorithms that work in arbitrary groups, e.g., exhaustive brute-force search,
Baby-step giant-step algorithm, Pollard-rho for logarithms, and the Pollard’s Kangaroo.

• Algorithms which work in arbitrary groups but are especially efficient if the order
of the group has only small prime factors, e.g., Pohlig-Hellman algorithm.

• Algorithms that only work in certain groups, e.g., Index-calculus algorithm.

As can be seen, it is interesting to be aware that Pollard’s Kangaroo algorithm we are
studying belongs to the first group of generic algorithms. This implies that although the
domain of application changes, and on many occasions, elliptic curves are used instead
of multiplicative groups of integers modulo a prime number, the problem we are consid-
ering is the same. Therefore, its difficulty when solving it (or seen in another way, the
underlying computational complexity) is equivalent.

9
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3.1 Baby-step giant-step algorithm

The Baby-step giant-step algorithm is a simple algorithm to implement, but it requires
large amounts of RAM to work correctly. For this reason, its use always involves a strong
trade-off between memory and time.

The idea of this method is to store a pair of sets, one of small steps and another of
large steps, thanks to some specific mathematical properties of logarithms. If one of
the calculated values appears in both sets, an equality can be established, and the dis-
crete logarithm can be solved. For the curious reader, we recommend section 3.6.2 of the
Handbook of Applied Cryptography [4], where a detailed description of the algorithm and
its pseudocode can be found.

Let p − 1 be the order of the generator α and t its size in bits. The algorithm has
a time complexity of O(2t/2). This is a significant improvement over the brute-force
approximation, whose temporal cost is O(2t).

On the other hand, its spatial complexity is alsoO(2t/2), which makes it not feasible to
solve significant problems with this method. An example of what this space complexity
entails is given below:

Problem size Memory needed (RAM)

32 bits 0.25 MB

64 bits 32 GB

256 bits 9.9e+27 TB

1024 bits 1.6e+144 TB

Table 3.1: Baby-step giant-step memory requirements.

One of the advantages of this algorithm is that it is a generic algorithm, i.e., it can be
applied to any group, as long as the order of the group is known. In contrast, the large
memory requirements make it unfeasible for attacking real-world problems.

3.2 Pollard-rho algorithm for logarithms

The Pollard-rho algorithm is a randomised algorithm that can be used to solve discrete
logarithms. It works by defining a pseudo-random sequence and a pair of paths over it,
which it tries to make collide. Once this collision occurs, an equality can be established,
and the problem can be solved. The interested reader can find a detailed explanation of
this method and its pseudocode in section 3.6.3 of the Handbook of Applied Cryptography
[4].

This algorithm has the same asymptotic running time as the Baby-step giant-step algo-
rithm, i.e., it has a time complexity of O(2t/2). However, it requires a negligible amount
of memory, on the order of O(1), so it is preferred over the Baby-step giant-step to solve
problems of practical interest.

In addition to using negligible memory, this algorithm is also generic, so it does not
take advantage of any particular property of the groups and hence is of potential appli-
cability to any group. Its main drawback is that it is a Monte Carlo algorithm. Therefore,
there are certain conditions that, if not met, will cause the algorithm to fail with a very
high probability.
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3.3 Pollard’s Kangaroo algorithm

The Pollard’s Kangaroo algorithm, also known as Pollard-lambda, is a generic algorithm
for solving discrete logarithms. It is based on simulating a pair of kangaroos (one wild
and one tamed) running along the number line. The tame kangaroo leaves traps at each
jump so that if the wild kangaroo passes through an area where the tame kangaroo has
jumped, it will be trapped. Once trapped, we can establish an equation and solve the
discrete logarithm. Since this is the algorithm we are analysing, a detailed description of
it can be found in section 6.2.

The principal strength of this algorithm is that we do not need to seek the solution in
the whole search-space if we know that it lies in an interval between a and b.

Let w be the width of the interval, i.e., w = b − a. The size of this interval is what
really defines the size of the problem. In fact, if we do not know the interval in which
the solution is found, we can always set a = 1 and b = p − 1 so that the width would
be w = p − 2 and the asymptotic size of the problem would still be the order of the
generator.

Thus, with t′ being the bit size of the width, i.e., t′ = dlog2(w)e, the algorithm has a
time complexity of O(2t′/2). Regarding memory usage, it depends on the implementa-
tion used, but in general it can be negligible, in the order of O(1).

As can be seen, the advantage of this algorithm over its analogue, the Pollard-rho
algorithm for logarithms, is that we can narrow down the search space more strictly.
This fact, together with its great precision, makes it one of the most promising generic
algorithms for its practical applicability.

3.4 Pohlig-Hellman algorithm

The Pohlig-Hellman algorithm, also called the Silver-Pohlig-Hellman method, is a special-
purpose algorithm for computing discrete logarithms in groups whose order has small
prime divisors.

The basic idea of this algorithm is to iteratively calculate the p-adic digits 1 of the
logarithm by repeatedly shifting all but one of the unknown digits in the exponent and
computing that digit by elementary methods. A detailed description of the algorithm
can be found in section 3.6.4 of the Handbook of Applied Cryptography [4] for the interested
reader.

This algorithm has the limitation that the order of the group, let us denote it as n in
this case, is factorizable in small primes. Therefore, it cannot be applied to every group,
but where it can be used, it is more efficient than the generic algorithms.

Let n = pe1
1 · pe2

2 · . . . · per
r where ei ≥ 1 be the factorization of n. The time complexity

of the algorithm in the case where n has small factors is O(∑i ei(log n +
√

pi)).

As can be seen, this time bound is given by the order of the generator and not by its
size in bits. In general, we can assume that the asymptotic bound of this problem in bits
is, as in the rest of the algorithms, O(2t/2). However, under certain circumstances, the
actual performance of the algorithm may be better. On the other hand, if n is a prime, the
algorithm is equivalent to the Baby-step giant-step [4, Note 3.67.i].

1An p-adic number is an extension of the field of rationals such that the congruences modulo powers of a
fixed prime p are close according to the “p-adic metric”. This is a complex mathematical concept beyond the
scope of this work. For the inquisitive reader we recommend the following source: https://mathworld.
wolfram.com/p-adicNumber.html

https://mathworld.wolfram.com/p-adicNumber.html
https://mathworld.wolfram.com/p-adicNumber.html
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3.5 Index-calculus algorithm

The Index-calculus algorithm is the most efficient known method for computing discrete
logarithms. This algorithm is based on selecting a relatively small subset F of elements
of the group set G, called the factorial basis, such that a significant fraction of elements
of G can be efficiently expressed as products of elements of F. For the interested reader,
we recommend section 3.6.5 of the Handbook of Applied Cryptography [4], where a detailed
explanation of the algorithm, its pseudocode and the existing techniques for the most
efficient implementation possible can be found.

This algorithm is not generic, so it can only be applied to specific groups. For example,
while it is compatible with multiplicative groups of integers modulo a prime number, it
does not hold for elliptic curves.

The loss of generality is compensated by the efficiency obtained by taking advantage
of the particular properties of the groups with which it is compatible. Thanks to this,
although the algorithm can be generally considered to have a time complexity similar
to the others, O(2t/2), when certain conditions are met, its asymptotic behaviour is sub-
exponential with respect to the size of the problem.



CHAPTER 4

Practical applications

The discrete logarithm problem is one of the fundamental problems for designing public-
key cryptographic protocols. It provides the necessary mathematical foundation for the
design of these protocols, thanks to the non-existence of an algorithm capable of solving
it efficiently (in polynomial time).

Since the algorithm that we are studying in this work tries to solve this problem, the
practical applications are evident: if we are able to solve the discrete logarithm, we can
attack and undo the cryptographic protocols that make use of it. Moreover, this applies
to all kinds of protocols, both encryption and digital signature and identification, widely
used today.

Additionally, as we have commented in chapter 3, although the domain changes, the
use of elliptic curves considers the same problem, so the method we are studying also
applies to such protocols and services.

Among the systems that use the discrete logarithm, we must highlight the Diffie-
Hellman public-key exchange protocol [8], whose use is widespread in many different
applications and services worldwide. It is used from instant messaging and communi-
cation applications such as WhatsApp [9], Telegram [10], Signal [11] or Zoom [12], to
different security protocols such as Secure Shell (SSH) [13, RFC 4253], Transport Layer Se-
curity (TLS) [14, RFC 5246], Secure Sockets Layer (SSL) [15, RFC 6101], IP Security (IPsec)
[16, RFC 6071], and Internet Key Exchange (IKE) [16, RFC 6071].

This protocol is generally used to agree on symmetric keys that will be used to encrypt
a session. It is very common in cryptography to use symmetric encryption protocols such
as AES because they are generally faster than public-key protocols when encrypting and
decrypting messages. The main drawback of symmetric protocols is not related to their
security but to the key exchange:

“ Once the sender and recipient have exchanged the keys, they can use them
to communicate securely, but what secure communication channel have they
used to transmit the keys to each other? It would be much easier for an at-
tacker to try to intercept a key than to try all the possible key-space combina-
tions. ”

This is the problem that the Diffie-Hellman public-key exchange protocol solves, en-
suring that even if the attacker intercepts the messages that allowed the symmetric key
to be established, he must solve an extremely difficult problem to obtain it: the discrete
logarithm problem.

On the other hand, we can also highlight the ElGamal encryption system [17]. This
system is also based on the discrete logarithm problem and has many applications. Its

13
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outstanding versatility allows it to be used both as a protocol for data encryption, de-
cryption, and digital signatures.

4.1 Diffie-Hellman public-key exchange protocol

In this section, we are going to represent in a simplified way what the Diffie-Hellman
public-key exchange protocol consists of. Although this project’s goal is not to analyze
the various protocols that employ the discrete logarithm, if we have to pay attention to
any of them, it is this one because it is included in the great majority of services and
applications that we use daily. So, let us see how it works and how it can be attacked
using the algorithm we are studying.

The primary motivation behind this protocol is the following: we have a couple of
users, let us call them Alice and Bob. They want to communicate in a secure (encrypted)
way over the insecure internet. There is no secure channel between them to communi-
cate, and they are far enough away that they cannot speak in person and whisper the
password. The question we must ask is:

“ Is it possible they can agree on a secret key that they both know and that no
one else can figure out, even if they are listening? ”

Yes, thanks to the Diffie-Hellman public-key exchange protocol.

The protocol works as follows:

Algorithm 4.1: Diffie-Hellman public-key exchange procedure

1. Alice and Bob publicly agree to use a multiplicative group of integers modulo
p (where p is a prime number, i.e., Z∗p), and a generator α of this group;

2. Alice chooses a random number, a, but does not tell anyone;

3. Bob chooses a random number, b, but does not tell anyone either;

4. Alice sends Bob through an insecure channel, that is, publicly, the result of
calculating A = αa mod p;

5. Bob sends Alice through an insecure channel, that is, publicly, the result of
calculating B = αb mod p;

6. Alice has received B and calculates s = Ba mod p = αb·a mod p;

7. Bob has received A and calculates s = Ab mod p = αa·b mod p;

As can be seen, Alice and Bob have the same secret at the end of the algorithm: the
value of s, which is the same for both, thanks to the commutative property and the prop-
erties of powers.

On the other hand, if a third party were listening on the insecure channel, they would
only know the values of p, α, A and B but would not know the value of a or b. The only
way to calculate s without these two values would be to solve the discrete logarithm
defined by:

αa mod p = A or αb mod p = B

Both are equally complex to solve.
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Let us see it more visually in the following example:

Internet,
insecure

Alice’s computer Bob’s computer

p, α

a

A = αa mod p

b

B = αb mod p
A

B

s = Ba mod p s = Ab mod p

= αba
mod p = αab

mod p

Figure 4.1: Diffie-Hellman public-key exchange representation.

Once Alice and Bob have the key s, they can initiate a symmetric encryption protocol
such as AES, using its value as the encryption key, thus creating a secure (encrypted)
communication channel.

The cryptographic attack that we can perform is simple: use our kangaroo algorithm
to compute a = Kangaroo(α, p, A) and once we have the value of a, calculate, like Alice,
s = Ba mod p. Then the obvious question is:

“ If our algorithm can solve the discrete logarithm, are these widely used
Diffie-Hellman generated keys insecure? ”

The answer is, as the reader might expect, a resounding no. A straightforward solu-
tion is used to avoid this type of attack: to employ keys of enormous size. Although our
algorithm can solve the discrete logarithm and, as we will see later in chapter 7, does so
several orders of magnitude faster than a brute force algorithm, it is still an exponential
algorithm. It should be remembered that this is why the discrete logarithm is so widely
used: no known algorithm is capable of solving it in polynomial time. Therefore, it will
still need billions of years to solve the discrete logarithm with keys of enormous size.





CHAPTER 5

Problem statement and
formulation

This chapter attempts to clearly and concisely establish the problem we solve throughout
this project. We define the hardware used for it, the results’ acceptable bounds in terms
of space and computation time, and the procedures that we follow before each test and
solution.

5.1 Problem delimitation

The problem that we solve is the calculation of the discrete logarithm. As we have seen
in section 2.6, this problem can be applied to different finite cyclic groups. In our case,
we focus only, although without losing generality, on one of the groups where it is more
manageable to understand the concept: in multiplicative groups modulo a prime p.

Thus, the problem can be summarized as calculating k given α, p, and β such that:

αk mod p = β

To solve it, we employ Pollard’s Kangaroo Algorithm, also known as “A Lambda Method
for Catching Kangaroos” [1] or simply Pollard-lambda. However, it is recommended not to
call it by the latter because the parallel version of the Pollard-Rho Algorithm is also known
as Pollard-Lambda since the graphical representation of its trace resembles the shape of the
Greek letter Lambda (λ).

Therefore, the study of algorithms other than Pollard’s Kangaroo, such as Pohlig-Hellman
or the well-known Baby-step giant-step, is outside this work’s boundaries.

Also, to simplify the redesign and implementation of the algorithm, we are not going
to apply the distinguished points technique [18, 19]. We discuss this strategy in more depth
in chapter 9.

As indicated before, we work throughout this project with multiplicative groups
modulo a prime p. It should be noted, however, that the order of the group must be
complete, that is, the order of the group generator must be p− 1.

After implementing the first functional version of the algorithm, we noticed that it
failed about 25% of the time but inquisitively: the algorithm stopped finding a solution k.
However, this solution was not correct and did not meet the equality αk mod p = β. This
was remarkably strange since Pollard’s Kangaroo Algorithm has two reasonable outputs: it
either finds the solution that verifies the equation, or it does not. It is not expected that it
stops with a wrong result. After analysing what could be failing, we noticed that when

17
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generating the tests, we did not check if the generator α was of order p− 1. Indeed, in
the cases where it failed, it was because the order of the group’s generator was smaller
than p− 1. Therefore, the solution was given modulo ord(α), being smaller values and
thus not verifying the equation. Consequently, it is an essential requirement that the base
used is a group generator, i.e., ord(α) = p− 1.

Finally, it is convenient to emphasise the rigour followed when carrying out the ex-
perimentation:

• The execution time that appears in the results of the following chapters is the aver-
age time of the execution of 30 problems.

• The problem size will be defined, as usual in cryptography, by the size in bits of the
value of p, since it determines the size of the group G and the size of the crypto-
graphic keys to be cracked.

• Each version and configuration has been subjected to the same problem tests. In this
way, the complexity of the problems is the same for all the configurations examined.

• The average time measured is calculated only between the times of the executions
that have found the correct solution. For example, if a problem has taken one sec-
ond but has not found the solution and the rest have taken 20 seconds but have
found it, the one is discarded when calculating the time results.

5.2 Time delimitation

One of the most critical aspects of the work is the time delimitation: to restrict the com-
puting time. Given that the temporal complexity of the problem is linearly proportional
to the order of the group and, thus, exponentially proportional to the bit size of the mod-
ular value, we must be cautious with the execution time since increasing the input size
might substantially increase execution time.

Also, we must be aware that it is not enough to solve a problem of t bits. This problem
has best and worst cases, so we have decided to perform a set of 30 problems for each key
size and calculate the average execution time. In this way, we can reasonably estimate
the actual time cost of solving each problem size.

For all this, we determined that it is appropriate to limit the execution time to a max-
imum of one day and a half to finish the 30 problems that constitute a test. Another
viewpoint is that each problem can take around an hour to be solved (on average).

5.3 Space delimitation

The delimitation of the space to solve the problem is given mainly by the RAM memory
available in the machine where the algorithm is executed.

One of the advantages of Pollard’s Kangaroo Algorithm is that it does not require inten-
sive use of memory to solve the problem. Therefore, we consider that the 16GB of RAM
+ 2GB of SWAP memory of the system where we carried out the experimentation is more
than adequate. Any problem requiring a more significant amount of memory exceeds our
space constraints, and we will abort it. If it really requires that much memory, it might be
more reasonable to try to solve it with the Baby-step giant-step algorithm or similar.
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5.4 Hardware used for experimentation

All the versions experimented with and all the tests executed have been carried out on
the same system to avoid any interference in the results. The hardware and software of
the system that has performed the experimentation is the following:

• CPU: Intel i7-7700K @ 4.500GHz

• Number of cores: 4 (8 threads)

• RAM memory: 15,890 MiB

• SWAP memory: 2 GiB

• GPU: Intel HD Graphics 630

• OS: Ubuntu 20.04.3 LTS x86_64

• Kernel: 5.13.0-27-generic

• Python version: Python 3.8.10





CHAPTER 6

Experimentation

Throughout this chapter, we present the different algorithms implemented, the experi-
mentation carried out, and the tests performed. First, we implement an exhaustive solu-
tion search method to establish an upper time-bound. The following sections show the
successive modifications performed to Pollard’s Kangaroo Algorithm to optimize its perfor-
mance.

6.1 Brute Force algorithm

As mentioned in chapter 3, the discrete logarithm problem is an exponential problem
concerning the size of the modular value. There are no known algorithms for classical
computers capable of solving the discrete logarithm deterministically in polynomial time.

Before starting to program Pollard’s Kangaroo Algorithm, we believe it is interesting to
have a first approximation that supposes an upper bound for the problem. We achieve
this by implementing and measuring how long an exhaustive-search algorithm takes to
solve various input sizes.

The implemented solution is an algorithm that performs a systematic search for the
solution in the whole key-space:

Algorithm 6.1: Brute Force algorithm
Input: α, p, β
Output: k

k← 1;
while (αk mod p) 6= β do

k← k + 1;
end
return k

This algorithm is straightforward, but its main problem lies in its temporal complex-
ity. As we have mentioned, it looks for the solution in the entire key-space, that is, in the
set {1, 2, ..., p− 1}. Therefore, the algorithm is linear with the value of p. However, since
in practice p is enormous, the size of the problem is usually determined by its value in
bits. Let t be this value, i.e., t = dlog2 pe. With this value, the problem is exponential, i.e.,
its temporal complexity is O(2t).

21
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Once we have the algorithm ready and we verify it works with small test cases, we
proceed to large-scale experimentation. The results can be seen in table 6.1 and in figure
6.1.

The times shown in the upper part are the mean of 30 discrete logarithm problems.
As mentioned above, the size of p gives the size of the problem. As usual in cryptog-
raphy, we represent it as the number of bits that its binary representation occupies, i.e.,
problem size = d log2 p e. The accuracy value is defined as the number of times the algo-
rithm has found the solution divided by the number of problems to solve multiplied by
100.

Problem size 12 16 20 24 28 32 36

Time
% Accuracy

0.0008s
100.00

0.039s
100.00

0.191s
100.00

11.1s
100.00

3.7min
100.00

1.4h
100.00

22.6h
Estimated

Problem size 40 44 48 52 56 60 64

Time
% Accuracy

15.1d
Estimated

241.0d
Estimated

10.6y
Estimated

168.9y
Estimated

2703.1y
Estimated

43250.4y
Estimated

692005y
Estimated

Table 6.1: Execution time and accuracy of the brute force algorithm.

As can be seen, since it is a brute force algorithm, the solution is always found. How-
ever, the execution time excessively increases when exceeding 32 bits. It is logical since
every time we increase the size of the problem by 4, we are multiplying by 24 = 16 the
the search-space size.

That is why, following the guidelines set out in section 5.2, we have chosen not to
execute the tests with a size greater than 32 bits. Instead, we have calculated the estimated
time it would take to execute such a brute-force search.

As can be appreciated, this problem overgrows. While a 60-bit problem would cost
43,250 years, which is already excessive (an ancestor from the Upper Paleolithic would
have left running the problem for us to find it nearing completion today), an 80-bit prob-
lem would cost several lifetimes of the universe. The infeasibility of solving the discrete
logarithm using a brute force algorithm is evident.
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Figure 6.1: Time required to solve the discrete logarithm by brute force.





6.2 Kangaroo v.1 - Search in the whole interval 25

6.2 Kangaroo v.1 - Search in the whole interval

In this first version of the algorithm, we focus only on implementing a functional version
of Pollard’s Kangaroo Algorithm as simple as possible, leaving the optimizations for the
following versions. To do this, we rely on the original article by John M. Pollard: “A
Lambda Method for Catching Kangaroos” [1].

To understand this algorithm, John M. Pollard uses the following metaphor: the kan-
garoo method employs two kangaroos (the two players in Kruskal’s Count) jumping iden-
tically across different terrains (different cards). The objective is to capture the wild kan-
garoo with the cooperation of another tamed kangaroo. These kangaroos are jumping,
and the amount they jump depends on the quality of the terrain they are on (the card’s
value).

Every time our tame kangaroo jumps, it sets up a series of traps. The wild kangaroo
will be entrapped if it lands on any of them along its route. If this happens, we can
establish a simple equation and solve the discrete logarithm.

In [1], Pollard defines the jumping functions of the kangaroos (in the example of
Kruskal’s Count, it would be equivalent to defining how we go from one card to an-
other). He also indicates how to get the result of the discrete logarithm when one kan-
garoo catches the other, and offers an example of a jump evaluation function (similar to
being on a card and figuring out what value it has, to know how many cards we must
move on).

The deck is equivalent to the set G of a group. In this case, we consider the multi-
plicative group Z∗p. A more straightforward way to see it is to imagine that the kangaroos
jump over the number line, although ordered according to how the generator α generates
the group G 1.

Furthermore, we define a set of integers S that represents the possible values for the
jumps (in Kruscal’s Count, S would be the set of card values, i.e., S = {1, 2, 3, . . . , 9, 10}).

Finally, it should be remarked that one of the advantages of this algorithm is that it
does not need to search the entire search space. We can limit the search by establishing
boundaries a and b so that it only searches between those numbers.

The tame kangaroo starts at position x0 and performs a series of jumps xi. With each
jump, it deposits a trap at position xi and travels a total distance di. For each jump we
store the pair (xi, di). Since, in this case, the “deck” is cyclical and has no end, we define
the value σ that represents the number of jumps the tame kangaroo will make before
stopping and resting (equivalent to putting down the coin).

Similarly, the wild kangaroo starts from x′0 and makes a series of jumps x′i and covers
a total distance d′i that we store. If the wild kangaroo lands on a trap at any point in its
journey, it will be irremediably trapped (like if our friend lands on a card from our path),
and we can solve the discrete logarithm. On the other hand, if it avoids all the traps, the
algorithm will stop, indicating that the solution has not been found.

Mathematically, kangaroos are represented as follows:

xi+1 = xi · α f (xi) mod p

di = f (x0) + f (x1) + . . . + f (xi−1)

1For simplicity, in the illustrations of the number line we have omitted this ordering.
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Where f (xi) is the jump evaluation function, which given a position (the terrain / the
card), returns a value of S (quality of the terrain, i.e. how much it can jump / value of the
card).

In [1], Pollard defines f as:

f (xi) = µj , 0 ≤ j ≤ µ− 1 , where j ≡ xi (mod µ)

Where µ = |S| and recommends that µ�
√

b− a.

The starting points of the kangaroos are the following:

x0 ≡ αb (mod p)

d0 = 0

x′0 ≡ αk (mod p) = β

d′0 = 0

The solution k to the discrete logarithm is found if at any time the wild kangaroo falls
into a trap. This is equivalent to saying that xN = x′M for some N and M. Let us develop
this equality:

xN ≡ x′M (mod p)

xN−1 · α f (xN−1) ≡ x′M−1 · α f (x′M−1) (mod p)

x0 · αdN ≡ x′0 · αd′M (mod p)

αb · αdN ≡ αk · αd′M (mod p)

αb+dN ≡ αk+d′M (mod p)
b + dN ≡ k + d′M (mod φ(p))
b + dN ≡ k + d′M (mod p− 1)

k ≡ b + dN − d′M (mod p− 1)

Therefore, once some x and some x′ collide, solving the discrete logarithm is as simple
as calculating k ≡ b + dN − d′M (mod p− 1).

On the other hand, the calculation of x′ (wild kangaroo jumps) can stop 2 when d′M >
b + dN − a, as this indicates that the wild kangaroo has avoided all the traps [1].

In algorithm 6.2, we can see the resulting pseudocode:

Algorithm 6.2: Pollard’s Kangaroo procedure

Initialize the initial positions of both kangaroos;
The tame kangaroo performs σ jumps and sets σ traps;
while the wild kangaroo does not fall into a trap do

Perform a wild kangaroo jump;
if the stopping condition is met, the algorithm has failed, stop;

end
return b + dN − d′M (mod p− 1)

It is interesting to remark that we state that the tame kangaroo should complete all its
jumps before the wild kangaroo starts to jump. Although this technique is the same as
the one described in [1], it is not the only one that exists in the literature. For example,
it would also be possible to alternate their jumps and check, after each pair, if a collision
occurs.

2Note that the calculations of x (tamed kangaroo jumps) are by definition limited since 0 ≤ N ≤ σ.
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Now let us see a minimal example of how this algorithm works and how it actually
finds the solution. It should be noted that we have mentioned a series of hyperparameters
to which we have to assign a value:

a and b define the search interval. Although, in theory, this would allow us to reduce
the search space, the reality is that the modulo function is widely used in cryptography
precisely because it blurs any clues about the area in which we should search for the
solution. Therefore, since we cannot define a specific search interval, we will search the
entire interval, that is, a = 1 and b = p− 1.

On the other hand, we have the size of the group S, that is, µ = |S|. We initially give
the value µ = 4, just as Pollard does in [1] and later in section 6.5 we will analyze if this
value is the most suitable or if there is another better option.

Finally, we have σ, which determines the number of jumps the tame kangaroo makes
and the number of set traps. For this small example, four traps are more than enough.

Therefore, this example is only 4 bits long and has the following parameters:

αk mod p = β where


α = 2
p = 11
β = 9

and


a = 1
b = p− 1 = 10
σ = 4
µ = 4

In this case, the solution can be calculated by hand, and we can see that it is six:

64 ≡ 9 (mód 11)

26 ≡ 9 (mód 11)

⇓

k = 6

Now let us see how it would be solved with Pollard’s Kangaroo Algorithm:

Jump function and power precalculation

f (xi) = µj , 0 ≤ j ≤ µ− 1 , where j ≡ xi (mod µ)

⇓

f (xi) = 4j , 0 ≤ j ≤ 3 , where j ≡ xi (mod 4)

Since j ∈ {0, 1, 2, 3}, we know that f (xi) ∈ {40, 41, 42, 43} and therefore, α f (xi) ∈
{α1, α4, α16, α64} (mod p), so we can precalculate the powers:

• 21 (mod 11) = 2

• 24 (mod 11) = 5

• 216 (mod 11) = 9

• 264 (mod 11) = 5

And therefore:

pows = [2,5,9,5]; α f (xi) = pows[xi % 4]
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Tame kangaroo

x0 ≡ αb (mod p) ⇒ x0 = 210 mod 11 = 1

x0 = 1
d0 = 0

1 2 3 4 5 6 7 8 9 10

T

x1 = x0 · α f (x0) (mod p) = 1 · 2 f (1) (mod 11) = 1 · 24 (mod 11) =
= 1 · pows[x0 % 4] (mod 11) = 1 · pows[1] (mod 11) = 5

d1 = f (x0) = f (1) = 4

1 2 3 4 5 6 7 8 9 10

T

x1 = 5
d1 = 4

1 2 3 4 5 6 7 8 9 10

T

x2 = x1 · α f (x1) (mod p) = 5 · 2 f (5) (mod 11) = 5 · 2 f (1) (mod 11) =
= 5 · pows[1] (mod 11) = 5 · 5 (mod 11) = 3

d2 = f (x0) + f (x1) = d1 + f (x1) = 4 + f (5) = 4 + f (1) = 4 + 4 = 8

1 2 3 4 5 6 7 8 9 10

T

x2 = 3
d2 = 8

1 2 3 4 5 6 7 8 9 10

T
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x3 = x2 · α f (x2) (mod p) = 3 · 2 f (3) (mod 11) =
= 3 · pows[3] (mod 11) = 3 · 5 (mod 11) = 4

d3 = f (x0) + f (x1) + f (x2) = d2 + f (x2) = 8 + f (3) = 8 + 64 = 72

1 2 3 4 5 6 7 8 9 10

T

x3 = 4
d3 = 72

1 2 3 4 5 6 7 8 9 10

T

Wild kangaroo

x′0 ≡ αk (mod p) = β ⇒ x′0 = β = 9

x′0 = 9
d′0 = 0

1 2 3 4 5 6 7 8 9 10

W

x′1 = x′0 · α f (x′0) (mod p) = 9 · 2 f (1) (mod 11) = 9 · 24 (mod 11) =
= 9 · pows[1] (mod 11) = 9 · 5 (mod 11) = 1

d′1 = f (x′0) = f (1) = 4

1 2 3 4 5 6 7 8 9 10

W

x′1 = 1
d′1 = 4

↑
Caught!
by x0

1 2 3 4 5 6 7 8 9 10

W
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Collision

W
x′1 = 1
d′1 = 4T

x0 = 1
d0 = 0

xN ≡ x′M (mod p)

xN−1 · α f (xN−1) ≡ x′M−1 · α f (x′M−1) (mod p)

x0 · αdN ≡ x′0 · αd′M (mod p)

αb · αdN ≡ αk · αd′M (mod p)

αb+dN ≡ αk+d′M (mod p)
b + dN ≡ k + d′M (mod φ(p))
b + dN ≡ k + d′M (mod p− 1)

k ≡ b + dN − d′M (mod p− 1)

⇓

k ≡ b + d0 − d′1 (mod p− 1)
k ≡ 10 + 0− 4 (mod 10)
k = 6

As can be seen, in this case the algorithm has worked perfectly and has found the
solution to the discrete logarithm.

Once this algorithm had been implemented in Python, we experimented with differ-
ent values of σ to determine its optimal value for much more significant problems. We
performed the experimentation with the largest values that were temporarily reasonable
in the case of brute force. The results can be seen in table 6.2.

Configuration
σ = 10
µ = 4

σ = 50
µ = 4

σ = 100
µ = 4

σ = 500
µ = 4

σ = 1000
µ = 4

σ = 5000
µ = 4

σ = 10000
µ = 4

24 bits
problem-set

0.099s
23.33

0.098s
80.00

0.097s
100.00

0.098s
100.00

0.098s
100.00

0.099s
100.00

0.103s
100.00

28 bits
problem-set

1.24s
26.67

1.85s
80.00

1.89s
96.67

1.89s
100.00

1.88s
100.00

1.89s
100.00

1.93s
100.00

32 bits
problem-set

18.4s
16.67

29.4s
83.33

32.2s
100.00

32.5s
100.00

32.5s
100.00

32.7s
100.00

33.0s
100.00

Table 6.2: Execution time and accuracy of different configurations for the Kangaroo-v.1 algorithm.

As we can see, the results reveal two facts. First, a very small value of σ implies that
very few traps are set, and then the problem is seldom solved. On the other hand, placing
an enormous amount of traps does not excessively increase the computation time. How-
ever, storing many traps is not interesting due to the extra space cost, and it is reasonable
to assume that setting σ too elevated will result in an unnecessary cost overrun that may
be substantially higher for larger problems.
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For all these reasons, we chose the value of σ = 500 as the optimal one in the absence
of further experimentation with the combination of σ and µ. We leave this experimenta-
tion for a later, more optimized version, which should allow us to attack more significant
problems (see section 6.5).

Once we have decided on the optimal value of σ, we have done a complete experi-
mentation with σ = 500 and µ = 4. The results can be seen in table 6.3 and figure 6.2.

Problem size 12 16 20 24 28 32 36

Time
% Accuracy

0.0002s
96.67

0.0003s
100.00

0.005s
100.00

0.098s
100.00

1.88s
100.00

32.5s
100.00

9.6min
100.00

Problem size 40 44 48 52 56 60 64

Time
% Accuracy

2.6h
100.00

1.7d
Estimated

27.6d
Estimated

1.2y
Estimated

19.4y
Estimated

309.8y
Estimated

4956.2y
Estimated

Table 6.3: Execution time and accuracy of the Kangaroo-v1 algorithm.

As can be seen, this algorithm is much more efficient than the brute force version.
However, as expected, very large values will continue to be unfeasible due to the com-
plexity of the problem itself.

Nevertheless, we were able to solve problems up to 40 bits with this approximation,
with an average time of 2.6 hours, which is a significant reduction from the two weeks
that the brute force version was expected to take. In general, this version has allowed us
to solve problems in a search-space 28 = 256 times larger, requiring a similar amount of
time.

1 ms

1 s

1 hour

1 year

1000 years

1e6 years

Life of universe

16 32 64 128

T
im

e

Problem size

Data − Kangaroo v.1

Fit − Brute Force

Fit − Kangaroo v.1

Figure 6.2: Time required to solve the discrete logarithm by the Kangaroo v.1 algorithm.
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6.3 Kangaroo v.2 - Creating a Wild Jumps Database

In this second version of the algorithm, we make a variety of optimizations to the first
version in order to reduce its execution time.

An initial step to achieving this optimization is modifying how we try to solve the
problem. In this version, instead of searching the entire interval directly, i.e. setting a = 1
and b = p− 1, we divide the whole interval into chunks of fixed size, which we refer to
as “sections”.

In this way, we now apply Pollard’s Kangaroo Algorithm to only one section at a time,
setting the values of a and b as the start and end of the section. If the solution to the dis-
crete logarithm is found in that section, it is returned, and the algorithm ends. Otherwise,
it is searched in the next section, as shown in simplified form in algorithm 6.3:

Algorithm 6.3: Kangaroo v.2 - Basic procedure

Divide interval in sections;
foreach section ∈ sections do

Determine the limits a and b;
k← Kangaroo(α, p, β, a, b);
if k 6= NULL then

return k
end

end
if k is not found and there are no sections left to explore then

the algorithm has failed, stop;
end

Operating in this way, we can appreciate a repetitive calculation: once the tame kan-
garoo has calculated its σ jumps and has placed its σ traps (which depend on the value of
b and, therefore, change every section), wild jumps are computed until a collision occurs
or the stop condition is met. However, the jumps of the wild kangaroo do not depend on
a or b, so they will always be the same for a given discrete logarithm problem.

Therefore, an optimization applicable to the algorithm is to create what we have
named the “Wild Jumps Database” (WJD). In each section, the idea now is that once
the tame kangaroo has calculated its σ jumps, these jumps intersect with the WJD.

If there is a collision, we directly have a solution to the problem, and the wild kan-
garoo does not need to make any jump. Otherwise, wild kangaroo jumps continue to be
calculated and accumulated in the WJD until the solution is found, or the stop condition
is met and the next section is processed.

In this way, we can achieve a significant reduction in the calculation. Generally, for the
first section, many wild jumps will be carried out, and the Wild Jumps Database will be
filled in. However, no wild jumps will be required for the remaining sections since either
a collision will occur or d′ will already be high enough to meet the halting condition, and
we will not waste time looking at a section where the solution is not located.

Therefore, we have given a twist to the algorithm. Until now, the tame kangaroo has
been setting traps, and, with luck, the wild kangaroo would fall into one of them. Now,
being the tame kangaroo on a piece of land, we know if the wild has passed through here.
If it does, we set the equation the same way as in version one. Thus, the tame kangaroo
has become a detective instead of a hunter.
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After implementing this algorithm in Python and verifying that it works correctly,
we have performed a large-scale experimentation with σ = 500 and µ = 4. The size of
the sections is 216 = 65 536, which a priori 3 seems large enough to avoid an excessive
number of interval divisions, but not too large so that the kangaroo algorithm can solve
the subproblem in a very short time because it must be done many times. The results can
be seen in table 6.4 and figure 6.3.

Problem size 12 16 20 24 28 32 36

Time
% Accuracy

0.0002s
96.67

0.0005s
100.00

0.004s
100.00

0.029s
100.00

0.473s
100.00

8.65s
100.00

2.7min
100.00

Problem size 40 44 48 52 56 60 64

Time
% Accuracy

40.9min
100.00

10.9h
Estimated

7.3d
Estimated

116.3d
Estimated

5.1y
Estimated

81.5y
Estimated

1303.8y
Estimated

Table 6.4: Execution time and accuracy of the Kangaroo-v.2 algorithm.

As can be seen, this new way of finding the solution allows us to reduce the search
time by more than a half. Specifically, the test-sets are solved about 3.75 times faster
than in the first version of the algorithm. For example, a 44-bit problem would cost
approximately 11 hours instead of the nearly two days of the v.1 and the 241 days of the
brute force algorithm, a considerable reduction.
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1 s

1 hour

1 year

1000 years

1e6 years
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Problem size

Data − Kangaroo v.2

Fit − Brute Force

Fit − Kangaroo v.1

Fit − Kangaroo v.2

Figure 6.3: Time required to solve the discrete logarithm by the Kangaroo v.2 algorithm.

Despite these promising results, we need to check if the assumption we have made
when setting the size of the sections to 216 elements is adequate or if we can further
improve this approach, as we see in section 6.4.

3In the third version of the algorithm we analyze if it is better to follow another more elaborate strategy.
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6.4 Kangaroo v.3 - Dynamically sized sections

In this section, we perform an analysis of which is the ideal size for the sections in which
we divide the number line. For this purpose, we define a new hyperparameter: λ. In
the second version of the algorithm, we have assumed that this value can be constant re-
gardless of the problem size and that sections of 216 elements were a suitable dimension.
Throughout this passage, we review if this assumption is accurate.

This new hyperparameter, λ, will determine the size of the sections as follows: the
entire interval from 1 to p − 1 will be divided into sections with 2λ values. Thus, the
second version of the algorithm had a value of λ = 16 since the sections contained 216 =
65 536 values.

As discussed in section 6.3, it seems reasonable to think that a very small value of λ
will produce too many sections with such trivial problems that more computation time
will be spent initializing the algorithm than searching for the solution itself, causing a
significant overhead. On the other hand, sections with a considerable size would lead
us to a situation similar to the first version of the algorithm where we search the entire
interval, thus not taking advantage of the speedup achieved thanks to the Wild Jumps
Database.

For these reasons, while the value of λ = 16 was adequate for us to evaluate the
second version of the algorithm and verify that the new search strategy and the Wild
Jumps Database were able to reduce the times of the first version significantly, it seemed
necessary to determine whether this value is the optimal one for achieving good results,
or if it is too small and we should use larger values.

Thus, we have experimented with distinct values of λ for different problem sizes. The
results can be seen in table 6.5 and plot 6.4.

Problem size 24 26 28 30 32 34 36 38 40

λ = 12
0.304s
100.00

0.864s
100.00

>5s
killed

>10s
killed

>20s
killed

>80s
killed

>5min
killed

>21min
killed

>1.4h
killed

λ = 16
0.026s
100.00

0.073s
100.00

0.527s
100.00

0.900s
100.00

9.27s
100.00

43.4s
100.00

2.3min
100.00

6.3min
100.00

33.5min
100.00

λ = 20
0.039s
100.00

0.052s
100.00

0.186s
100.00

0.301s
100.00

2.65s
100.00

11.8s
100.00

36.7s
100.00

1.7min
100.00

8.9min
100.00

λ = 24
0.184s
100.00

0.308s
100.00

0.678s
100.00

0.609s
100.00

2.89s
100.00

10.8s
100.00

32.4s
100.00

88.5s
100.00

7.8min
100.00

λ = 28
0.183s
100.00

1.14s
100.00

2.69s
100.00

>10s
killed

13.3s
100.00

21.3s
100.00

42.7s
100.00

97.6s
100.00

7.7min
100.00

λ = 32
0.187s
100.00

1.12s
100.00

2.72s
100.00

>10s
killed

>20s
killed

_
out of
RAM

_
out of
RAM

_
out of
RAM

_
out of
RAM

Table 6.5: Execution time and accuracy of different λ configurations for the Kangaroo-v.3 algo-
rithm. Bold indicates the best result for that problem-set.
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Figure 6.4: λ optimal value per problem size according to Table 6.5.

As can be seen, it seems that there is no optimal value for λ, but rather that the optimal
value increases as the problem increases. In turn, this is a great inconvenience since
we cannot simply increase its value because values as low as λ = 32 already cause the
algorithm to be cancelled due to excessive RAM consumption 4.

On the other hand, another important conclusion that we draw is that λ = 16 will
not generally be a too propitious value since other configurations can solve the discrete
logarithm in less than half the time.

Given this situation and taking into account the results obtained, we have determined
that the value of λ should be set dynamically according to the size of the problem to be
solved.

Since the execution time for insignificant problems of the previous versions is small
per se, it seems counterproductive to create such tiny sections due to the overhead it
would cause, so we lower bound the size of the sections to λ = 16. On the other hand,
due to RAM memory limitations, we have also decided to limit the value of λ further,
leaving it at a maximum of λ = 26. We have chosen the value λ = 26 instead of 28 or 30
so that it does not use too much RAM memory and we have enough margin to parallelize
the algorithm 5.

4It is convenient to remember that one of the strengths of Pollard’s Kangaroo Algorithm is that it does not
need (or should not need) large amounts of RAM. Therefore, we advise against performing experiments by
configuring more RAM in the computer. If large amounts of RAM are available, it is probably better to try
to solve the discrete logarithm problem using the Baby-step giant-step algorithm or similar.

5Since we have eight threads of execution, we thus limit the sequential algorithm so that it does not use
more than 1

8 of the total computer RAM.
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Given all the above conclusions, we have defined the following piecewise linear func-
tion to define the optimal value of the hyperparameter λ:

t = dlog2 pe ; λ∗ =


16 if t < 28
t− 12 if 28 ≤ t ≤ 38
26 if t > 38

Once this modification has been implemented on the v.2 algorithm, we have done a
complete experimentation with σ = 500, µ = 4, and λ = λ∗. The results can be seen in
table 6.6 and figure 6.5.

Problem size 12 16 20 24 28 32 36

Time
% Accuracy

0.0002s
96.67

0.0005s
100.00

0.004s
100.00

0.029s
100.00

0.410s
100.00

2.43s
100.00

38.0s
100.00

Problem size 40 44 48 52 56 60 64

Time
% Accuracy

9.5min
100.00

2.5h
Estimated

1.7d
Estimated

26.9d
Estimated

1.2y
Estimated

18.8y
Estimated

301.5y
Estimated

Table 6.6: Execution time and accuracy of the Kangaroo-v.3 algorithm.

Although it is true that this optimization mainly affects problems between 30 and 40
bits, we can see that the overall time is lowered for larger problems as well. Therefore we
can assert that a value of λ = 26 is better than λ = 16 on large problems.

In conclusion, this proposal has achieved an acceleration in problems larger than 28
bits, solving them approximately four times faster. For example, on average, a 40-bit
problem would take about 10 minutes instead of the 40 minutes of the second version.
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Figure 6.5: Time required to solve the discrete logarithm by the Kangaroo v.3 algorithm.
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6.5 Kangaroo v.4 - Algorithm parallelization

The last significant modification we have made to our algorithm is to implement a paral-
lel version of it in order to take advantage of all of the machine’s cores and thus be able
to solve larger problems in a similar time.

This new algorithm follows a coordinator-worker architecture by parallelizing the
sequential algorithm with the Wild Jumps Database. It also implements the Dynamically
sized sections as they have proven to be helpful in large problems.

Thus, being th the number of threads we have available, we keep one thread of exe-
cution as coordinator, and the rest of the threads (th− 1) will be the workers that apply
our third version of Pollard’s Kangaroo Algorithm.

The procedure applied is as follows: the coordinator divides the number line into
th− 1 intervals and assigns each to a worker. Each worker, in turn, divides it into sections
of size 2λ and applies the strategy seen in section 6.3 (see Algorithm 6.3).

Once the distribution has been made, the coordinator is left to wait for a thread to
(hopefully) find the solution, while the workers search for it in their sections. Algorithms
6.4 and 6.5 explain in pseudocode these procedures.

Algorithm 6.4: Kangaroo v.4 - Coordinator procedure

Divide the number line into th− 1 intervals;
foreach worker ∈ workers do

Send its sub-interval;
end
failure counter← 0;
while failure counter 6= th− 1 do

Wait to receive a result;
if k is received, terminate all workers and return k;
if None is received, it implies that a worker has exhausted its sections, increase
the failure counter by one;

end
if the failure counter is equal to th− 1, no workers have found the solution and
there are no sections left to explore, the algorithm has failed, stop;

Algorithm 6.5: Kangaroo v.4 - Worker procedure

Receive sub-interval and divide it in sections;
while sections remain to be explored in my sub-interval do

Select one section to explore;
Determine the boundaries a and b of that section;
res← Kangaroo(α, p, β, a, b);
if res = −1, it means that the solution has not been found in that section, go to
the next one;

if res > 0, it implies that k has been found, send k to coordinator;
end
if k has not been found in any section, send None to coordinator;
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After implementing this algorithm in Python and verifying that it works correctly,
we decided to perform the experimentation that we had pending with different values
of µ to determine its optimal value. We also decided to make another one with different
values of σ since its optimum could have changed with the parallelization and the rest of
the modifications made in versions two and three. The results can be seen in tables 6.7
and 6.8.

Config.

Problem
size 12 16 20 24 28 32 36 40

σ = 5
µ = 4 λ = λ∗

0.004s
100.00

0.005s
86.67

0.005s
33.33

0.010s
16.67

0.044s
30.00

0.560s
26.67

11.4s
30.00

2.6min
13.33

σ = 50
µ = 4 λ = λ∗

0.003s
100.00

0.008s
100.00

0.012s
100.00

0.015s
90.00

0.050s
80.00

0.713s
90.00

12.6s
86.67

2.4min
73.33

σ = 500
µ = 4 λ = λ∗

0.003s
100.00

0.003s
100.00

0.066s
100.00

0.081s
100.00

0.126s
100.00

0.763s
100.00

11.0s
100.00

2.3min
100.00

σ = 5000
µ = 4 λ = λ∗

0.005s
100.00

0.005s
100.00

0.008s
100.00

0.516s
100.00

0.934s
100.00

1.74s
100.00

12.4s
100.00

2.3min
100.00

σ = 50000
µ = 4 λ = λ∗

0.020s
100.00

0.021s
100.00

0.027s
100.00

0.055s
100.00

9.44s
100.00

13.0s
100.00

32.2s
100.00

4.8min
100.00

Table 6.7: Execution time and accuracy of different configurations of σ for the
Kangaroo-v.4 algorithm.

Config.

Problem
size 12 16 20 24 28 32 36

σ = 500
µ = 1 λ = λ∗

0.004s
100.00

0.055s
100.00

0.069s
100.00

0.108s
100.00

0.815s
100.00

13.2s
100.00

3.8min
100.00

σ = 500
µ = 2 λ = λ∗

0.004s
100.00

0.053s
100.00

0.078s
100.00

0.104s
100.00

0.572s
100.00

9.03s
100.00

2.5min
100.00

σ = 500
µ = 3 λ = λ∗

0.003s
100.00

0.013s
100.00

0.075s
100.00

0.090s
100.00

0.255s
100.00

3.15s
100.00

49.3s
100.00

σ = 500
µ = 4 λ = λ∗

0.078s
100.00

0.079s
100.00

0.165s
100.00

0.189s
100.00

0.227s
100.00

0.825s
100.00

10.9s
100.00

σ = 500
µ = 5 λ = λ∗

0.003s
100.00

0.003s
100.00

0.005s
100.00

0.066s
100.00

0.097s
100.00

0.199s
93.33

1.61s
96.67

σ = 500
µ = 6 λ = λ∗

0.004s
100.00

0.003s
100.00

0.004s
100.00

0.026s
100.00

0.096s
96.67

0.129s
43.33

0.237s
20.00

σ = 500
µ = 7 λ = λ∗

0.004s
100.00

0.003s
100.00

0.004s
100.00

0.008s
100.00

0.059s
93.33

0.096s
33.33

0.140s
6.67

σ = 500
µ = 8 λ = λ∗

0.006s
100.00

0.003s
100.00

0.004s
100.00

0.010s
100.00

0.045s
83.33

0.093s
20.00

0.209s
3.33

Table 6.8: Execution time and accuracy of different configurations of µ for the
Kangaroo-v.4 algorithm.
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Despite the several optimizations and improvements we have performed to our al-
gorithm, the optimal value of σ does not actually change. As can be seen, very small σ
values make the process slightly faster but also cause it to fail frequently. On the other
hand, huge σ values anticipate excellent accuracy at the risk of taking longer than neces-
sary to solve the problem. For all these reasons and considering the results shown, we
still choose σ = 500 as the optimal value.

For its part, the results of the µ analysis indicate that while this value does not matter
too much in small problems, it becomes a critical parameter in more significant problems.
On the one hand, we see that large values of µ achieve speedy times but sacrifice the
percentage of successes too much. On the other hand, small values cause the algorithm
to take longer than required. In conclusion, it seems that Pollard was not wrong when he
chose the value of µ = 4, although the results for µ = 5 also seem reasonable and even
more attractive.

For all of the above reasons, we have performed two large-scale experiments, one
with σ = 500, µ = 4, and λ = λ∗, and another with σ = 500, µ = 5, and λ = λ∗, and
we finally selected the one that provides the best overall performance. The results can be
seen in tables 6.9, 6.10, and figure 6.6.

Problem size 12 16 20 24 28 32 36

Time
% Accuracy

0.003s
100.00

0.003s
100.00

0.067s
100.00

0.080s
100.00

0.128s
100.00

0.798s
100.00

11.2s
100.00

Problem size 40 44 48 52 56 60 64

Time
% Accuracy

2.5min
100.00

44.8min
100.00

11.9h
Estimated

8.0d
Estimated

127.4d
Estimated

5.6y
Estimated

89.6y
Estimated

Table 6.9: Execution time and accuracy of the Kangaroo-v.4 algorithm. [µ = 4]

Problem size 12 16 20 24 28 32 36

Time
% Accuracy

0.003s
100.00

0.003s
100.00

0.004s
100.00

0.065s
100.00

0.098s
100.00

0.198s
93.33

1.65s
96.67

Problem size 40 44 48 52 56 60 64

Time
% Accuracy

19.0s
93.33

6.3min
86.67

1.7h
Estimated

1.1d
Estimated

17.8d
Estimated

284.7d
Estimated

12.5y
Estimated

Table 6.10: Execution time and accuracy of the Kangaroo-v.4 algorithm. [µ = 5]

As can be seen, if we compare the results of both experiments, we can reach two
conclusions: on one side, the value of µ = 4 provides us with more reliable results,
obtaining 100% accuracy in all the tests performed. On the other side, the tests with
µ = 5 are around seven times faster, a pretty remarkable improvement but reducing the
accuracy by about 10%.

As a proposal, our recommendation would be to select µ = 5 since the time reduction
is considerable and, if high accuracy is required, to try to increase the value of σ. Accord-
ing to previous results, by increasing it slightly we can achieve better values in accuracy
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and still obtain times similar to those we have with µ = 5 and σ = 500, without reaching
the higher times of µ = 4 and σ = 500.
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Figure 6.6: Time required to solve the discrete logarithm by the Kangaroo v.4 algorithm. [µ = 5]

Finally, it is interesting to analyze the temporal performance of this version with re-
spect to the previous ones. Comparing the values with µ = 4 as they are the ones we
also used before, we can conclude that the acceleration obtained by parallelizing the al-
gorithm is somewhat low, obtaining results around 3.35 times faster despite using seven
cores for the search of the solution. In chapter 7 we discuss the reason behind this low
speedup.

However, comparing the times with both improvements (parallel search and switch-
ing to µ = 5), we get a performance increase of around 24 times. This significant improve-
ment allowed us to solve the 44-bit test-set for the first time, in 6.3 minutes, substantially
faster than the 2.5 hours of the third version, the 1.7 days of the first version, or the 241
days of the brute force solution.
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6.6 Kangaroo v.5 - Do extreme hyperparameters give extreme
results?

This section focuses on analyzing and answering the title question: Do extreme hyperpa-
rameters give extreme results? Could a crazier combination of hyperparameters yield better
results?

The algorithm’s behaviour and the results obtained in previous sections motivate the
study of these questions and lead us to extend it as if it were a new version. However,
it is worth emphasizing that we do not introduce any changes to the algorithm, i.e., we
continue with the parallel implementation of the fourth version (see section 6.5).

More specifically, the question in the title arises from the conclusions obtained in ver-
sion four of the algorithm when we were looking for the ideal values for σ and µ. Figures
6.7 and 6.8 represent the results for 32-bit problems, but the trend is similar for all large
problem sizes. Let us remember that σ defines the number of jumps the tame kangaroo
makes and, hence, the number of traps it sets. In turn, µ models the function f that some-
how represents the quality of the terrain over which the kangaroos jump. The larger the
value of µ, the more different types of terrains there are and the larger the size of the set
S.
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Figure 6.7: Average time required and accuracy to solve 32-bit problems with different σ values.
Data extracted from table 6.7.
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Figure 6.8: Average time required and accuracy to solve 32-bit problems with different µ values.
Data extracted from table 6.8.
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The results of tables 6.7 and 6.8, and figures 6.7 and 6.8 lead to the following conclu-
sions:

• With large σ values, high accuracy is achieve, but very slow times.

• With small µ values, high accuracy is achieve, but very slow times.

• With large µ values, fast times are achieve, but too low accuracy.

Given these results, we propose a hypothesis: is it possible to bring these two param-
eters to the limit so that their effects are balanced? In other words: what would happen if
we set extremely high values of σ and µ? Is it possible to obtain both advantages of fast
times and high accuracy?

Perhaps this theory is not so far-fetched: large values of µ seem to solve the prob-
lem rapidly, but at the expense of precision. On the other hand, setting many traps re-
quires wasting time calculating (maybe excessive) tamed kangaroo jumps, but it has been
demonstrated that it can increase accuracy. So the question arises: are the adverse effects
likely to be counteracted?

To answer this question and test our hypothesis, we have performed a large-scale
experimentation as in the previous chapters. For the choice of the configuration values,
we have followed these guidelines:

• For the selection of σ, it is crucial to be aware that we are storing in a dictionary
each trap (position and distance travelled), and therefore, if there are no collisions
in the keys, we will store up to 2 σ integers. Given this space constraint, we have
chosen the largest value of σ that our RAM limits allowed us: σ = 10 000 000.

• For the choice of µ, we need to consider the constraint µ �
√

b− a [1]. In [3],
Pollard confirms that “powers of two are a good choice”, although he “does not
claim they are the best choice”. Since our best value was µ = 5, we decided to opt
for a power of this value and conduct the experiment with µ = 25.

The value of b − a is equivalent to the section size where we apply the kangaroo
algorithm. This size is delimited by λ, so it has at least 216 elements and at most
226 elements. Thus, its square roots are

√
216 = 28 = 256 and

√
226 = 213 = 8192.

Therefore, the value of µ = 25 satisfies the constraint since 25� 256� 8192.

• For λ, we have decided to continue with the strategy of the Dynamically sized sections
due to the good results obtained. Consequently, we set λ = λ∗.

In conclusion, we have performed a complete experimentation, with the parallel al-
gorithm of version 4, and with the following configuration values: σ = 10000000, µ = 25,
and λ = λ∗. The results can be seen in table 6.11 and in figure 6.9.

Problem size 12 16 20 24 28 32 36

Time
% Accuracy

-
killed

-
killed

10.7s
100.00

11.2s
100.00

10.8s
100.00

7.84s
100.00

11.9s
100.00

Problem size 40 44 48 52 56 60 64

Time
% Accuracy

9.23s
100.00

11.9s
100.00

26.0s
100.00

2.2min
100.00

28.1min
100.00

5.3h
100.00

3.6d
Estimated

Table 6.11: Execution time and accuracy of the Kangaroo-v.5 algorithm.
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As can be seen, the panorama has changed significantly compared to the results of
the fourth version of the algorithm. On the one hand, we have successfully solved much
larger test-sets. For example, on average, the 60-bit problems have been solved in slightly
more than five hours. As a reminder, the brute force algorithm required 43 250 years and
the fourth version required 285 days.

As mentioned above, it is worth noting that the implementations of this algorithm and
version four are exactly the same. We have only changed the configuration parameters.
A plausible assumption to explain this behaviour is that by increasing the value of σ so
significantly, we have caused a high density of traps in each section. This modification,
however, does not seem to introduce any major temporal drawbacks, although it does
increase memory consumption by storing such a large number of traps.

On the other hand, we see that “small” problems now require much more time to
be solved than in previous versions, around 10 seconds instead of fractions of a second.
This extra time is mainly due to the overhead caused by such a large number of traps
in problems where the sections are small (basically, there are more traps than land). It is
more noticeable in the case of 12 and 16 bits, where the test-set execution did not finish.

After examining the traces of these two cases, we discovered that one problem of
each size took so long (hours) that the experiment was stalled and had to be cancelled.
Nevertheless, some 12-bit and 16-bit problems were solved in similar times as the others,
ranging between 4 and 10 seconds on average and with 100% accuracy.

Altogether, the results are encouraging compared to previous configurations, with a
speedup over the fourth version of more than a thousand in some cases.
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Figure 6.9: Time required to solve the discrete logarithm by the Kangaroo v.5 algorithm.





CHAPTER 7

Results and discussion

This chapter collects and discusses the different results obtained during the experimen-
tation. We present the several modifications made and the motivation that led us to
implement each one of them. We also analyse the different options that have emerged
after each version was developed and the evolution of the algorithm’s capacity to solve
the discrete logarithm problem when facing progressively larger cryptographic keys.

First, as discussed in detail in section 6.1, we have implemented a brute-force algo-
rithm. While this algorithm has nothing to do with the kangaroo method, it had a clear
objective: to indicate which was the upper bound of the complexity of the problem. In
other words, it allowed us to know how long it would take to find the solution “manu-
ally”, without using any heuristics or sophisticated algorithms.

In this regard, it accomplished its objectives perfectly. As seen in table 6.1, this ex-
haustive search is feasible for solving problems up to 24 bits. However, the execution
time skyrockets if the key size is much larger. A reliable indicator that has been used
throughout the project to determine the actual algorithm capabilities is the maximum
key size that can be solved in less than 36 hours. In the case of the brute-force implemen-
tation, this size was 36 bits.

Once we had established the upper time bound of the problem, we were ready to
implement Pollard’s Kangaroo Algorithm. As discussed in section 6.2, for the first version,
we tried to implement an algorithm as clean as possible, based on Pollard’s description
of the method in [1].

However, this publication has no pseudocode to solve the problem, so the imple-
mented code follows our interpretation of the kangaroo method. Thus, at the time of
implementation, we found the need to define a pair of hyperparameters that define the
essential configuration variables of the algorithm:

• σ: represents the number of jumps and traps set by the tame kangaroo.

• µ: models the way the kangaroos jump and the number of different terrains there
are.

Once verified that the algorithm works correctly, we proceed to evaluate its capabil-
ities to solve discrete logarithms. As can be seen in table 6.3, with this new version, the
algorithm is able to decrypt keys of up to 42 bits. Therefore, we can determine that Pol-
lard’s Kangaroo Algorithm does indeed reduce the complexity of the problem as expected,
solving it about a hundred times faster.

Once Kangaroo v.1 was finished, we wondered what improvements we could im-
plement to extend the algorithm’s capabilities. The natural path to follow was to try to
exploit one of this method’s main advantages: defining some a and b boundaries to avoid

47
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searching through the whole space of solutions. Nevertheless, the chaotic behaviour in-
troduced by the modulus function prevents us from having clues about where the solu-
tion might fall.

The hypothesis proposed was the following: since there is no way of knowing where
the solution can be found in the interval, we will search everywhere. However, instead of
doing it all at once, we can divide the search space into sections and search sequentially
in each of them. If we find it, we can stop the execution immediately without needing
to continue searching through the rest. It is reasonable to estimate that, on average, the
algorithm will need to search through about half of the sections before finding the solu-
tion. The question is whether this search is faster than searching across the entire interval
in a single pass.

This approach has another fundamental advantage: the jumps of the wild kangaroo
are always the same regardless of the section. Thus, we could implement the so-called
Wild Jumps Database to avoid unnecessarily recomputing the wild kangaroo jumps. With
both techniques applied, the algorithm works almost three times faster, being able to
decrypt 44-bit keys in less than a day and a half.

The next logical point to study was the size of the sections. To test the hypothesis
of the second version, it was decided to use an arbitrary value. However, we did not
perform any study to check whether this value was optimal or not. In the third version
of the algorithm, we studied this feature, which we set with the hyperparameter λ.

The study’s conclusions were unambiguous: the optimal value increases as the prob-
lem size increases. However, this size cannot grow enormously as it leads to high RAM
consumption. Given this drawback, we decided to use a piecewise-defined function that
considers this constraint. With these modifications, the execution times were reduced by
a third, and the algorithm increased its capabilities to solve the discrete logarithm, being
able to decrypt 46-bit keys in 10 hours.

Once all these modifications had been made, there were few heuristic options left to
increase the algorithm’s capabilities further. Therefore, we employed the technique of
parallelization. At first glance, our method seemed to benefit directly from paralleliza-
tion’s advantages, so we attempted to exploit the CPU’s full computational power and
implement the section search in parallel.

The results were clear: parallelization helps solve the problem, but the achievable
speedup is not linear but somewhat lower. Around three times faster than the sequential
version using seven workers and one coordinator. To explain this phenomenon, we rely
on the state of the art. In [18], Paul C. van Oorschot and Michael J. Wiener analyse paral-
lelization in algorithms based on collision search, including Pollard’s Kangaroo Algorithm.
One of the conclusions they present is:

“ Obvious methods of parallelizing collision search algorithms do not give lin-
ear speedup; when m processors are used, collision search is only

√
m times

faster than when one processor is used. The new method for parallelizing Pol-
lard’s rho-method presented herein, based on the use of distinguished points,
gives linear speedup.

Paul C. van Oorschot and Michael J. Wiener [18] ”
Although they mention the Pollard rho algorithm, the conclusion is also applicable to

our algorithm. Therefore, parallelization results are correct and the expected ones given
that no techniques such as the distinguished points method have been applied.
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In addition, at this stage of the experiment, we also decided to re-evaluate the opti-
mal values of the basic hyperparameters. Surprisingly, while σ did not change, µ did.
Consequently, we decided from that moment to use the new optimum. Thus, with both
changes (parallelization and new µ value), the algorithm increased its capabilities again,
vulnerating keys of up to 52 bits in less than 36 hours.

Finally, the behaviour of the algorithm and the results obtained motivated the study
of whether increasing the hyperparameters λ and µ could increase the algorithm’s overall
performance. In the fifth version, we analyse this hypothesis and perform an experiment
to verify if it works.

It was surprising to find that the high density of traps caused by this hypothesis does
not reduce the algorithm’s overall performance. Although the results shown in table
6.11 discourage its usage in problems with few bits, it works remarkably well in large
problems. In this way, the algorithm’s capacity grew significantly, becoming capable of
solving 62-bit keys in less than a day. The complete evolution of the algorithm’s ability
to solve the discrete logarithm problem can be seen in figure 7.1.
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CHAPTER 8

Conclusions

The discrete logarithm problem is one of the fundamental problems in cryptography to-
day. Analyzing new methods to solve it implies analyzing new ways of carrying out
cryptographic attacks on the protocols that implement it. In our case, we have studied
Pollard’s Kangaroo Algorithm for this purpose.

The study of already developed approaches is more logical than it may seem at first.
As technology evolves, the computational power of the computers we have at our dis-
posal improves, and the cost of hardware decreases. Thus, attacks that were previously
economically unattainable can become efficient and viable after a technological break-
through.

A great example of this in the world of cryptography is the DES encryption system.
It was developed in the 1970s and was, for many years, the standardized symmetric en-
cryption protocol. Its key-space is 56 bits, huge for its time but conspicuously insufficient
today. In 1977, Whitfield Diffie and Martin Hellman estimated that an exhaustive key-
finding machine could be built for about $20,000,000. In 1993, Michael Wiener proposed
a new machine thanks to technological advances at the cost of approximately $1,000,000.
In 1998, the Deep Crack machine to crack DES was built for less than $250,000 [20]. It is im-
portant to emphasize that it was only possible to build Deep Crack at a relatively low price
because the hardware had become cheaper. In the 1980s, it would have been impossible
to build it without spending millions of dollars [20]. In 2009, an article was published
explaining how to build a DES cracking machine in less than nine days for e8,980 [21].

Throughout this project, we have presented different versions of Pollard’s Kangaroo
Algorithm, adapted to current technological improvements. Each variant presents spe-
cific enhancements and modifications to achieve progress in its temporal performance.
Although we are dealing with an exponential algorithm, as can be seen, there is a wide
margin for improvement. For each variant, we have analyzed how it behaved in a cryp-
tographic attack with different key sizes and compared the results to prior versions.

With these improvements implemented, we have tried to make our own contribution
to the different ways of configuring the algorithm that exists [3, 18, 22]. The Wild Jumps
Database and the Dynamically sized sections have been shown to provide a satisfactory
overall speedup to the algorithm.

In general, we have achieved attractive temporary reductions in each version de-
signed of the algorithm, finally reaching notable differences in the time that the same
cryptographic attack requires to complete successfully. The time gap between the first
and fifth versions is remarkable, obtaining results more than a hundred thousand times
faster in some cases. Figure 8.1 shows the time required by each version of the algorithm
to perform a cryptographic attack with keys of 32, 44, and 60 bits, sizes that are pretty
representative of the global results obtained.
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Figure 8.1: Time required to solve some discrete logarithm problems for each version developed.

It is worth noting the outstanding results of the latest version. Although we did not
anticipate that using extreme values in the hyperparameters that model the algorithm’s
behaviour would lead to significant positive effects, the experimentation carried out has
shown successful results, being able to solve 60-bit problems in a reasonable time.

When proposing this work of analysis and experimentation with keys of different
sizes, we did not expect to attack keys of such a large size successfully. Based on the
asymptotic estimates, we expected to solve problems of at most around 48 bits. Therefore,
we can affirm that we have obtained satisfactory results with the successive versions
presented.

To get an idea of the exorbitant size of the numbers we are working with, we can take
as a reference the age of the universe. According to the Big Bang theory, the universe
was created approximately 14 billion years ago. If we count it in seconds, the universe
is about 4.41e+17 seconds old. This number is only 59 bits long. An example of a 60-bit
problem can be seen in figure 8.2.

αk mod p = β


α = 1108981920138235052
β = 167535827043038444
p = 939623971882007407

⇓

1108981920138235052k mod 939623971882007407 = 167535827043038444

⇓

k = 108235977948900510 (Solved by Kangaroo v.5 after 3 hours)

Figure 8.2: 60 bits discrete logarithm problem.
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Regarding the objectives established in section 1.2, we present the following conclu-
sions:

• The algorithms have been successfully implemented.

• The accuracy of the algorithm is generally 100%. However, if the algorithm cannot
find the solution for a particular problem, increasing the value of σ can help to
increase the accuracy.

• The maximum problem size that the algorithm can solve in a reasonable time is 62
bits, with an estimated time of 21 hours.

• As we have indicated before, our main contribution is the Wild Jumps Database and
the Dynamically sized sections.

• The best combination of hyperparameters has been σ = 10000000, µ = 25, and
λ = λ∗ for problems of 40 bits or higher. For minor problems, σ = 500, µ = 5, and
λ = λ∗ has been shown to give the best results.

Finally, it is interesting to analyze these results from the current cryptographic secu-
rity perspective. As expected, despite the elevated speedups we have achieved in the
latest implemented versions, real-world problems are considerably larger than 60 bits
and are far from being resolved in reasonable times. Note that this is a positive conclu-
sion from a cryptographic security point of view. Therefore, we can conclude that the
current protocols are still secure and are unlikely to be attacked with this algorithm, at
least using a simple personal computer.





CHAPTER 9

Future work

Once the results have been commented on, we believe that it is interesting to analyze the
possible points for improvement and the issues that have remained pending in this work,
which could be of interest to deepen and further study in future versions.

First, a possible improvement that could improve the speed of solving problems is to
use the distinguished points technique. We are basing our design on Pollard’s original [1]
design, storing the entire set of jumps that the tame kangaroo performs. Different later
works [18, 19] use this technique to avoid storing all the traps.

The idea behind the distinguished points technique is to look for a collision between
the kangaroos, but not between all their paths, but only between a small subset of posi-
tions that satisfy a particular property. The downside of this method is that it makes the
implementation of the algorithm even more complex, and we did not believe that it was
worthwhile for the analysis we wanted to perform. However, it is certainly a good point
to continue this work.

On the other hand, the literature discusses a wide variety of techniques for dealing
with kangaroos. We have only used the services of one wild and one tamed kangaroo,
emphasizing the creation of our Wild Jumps Database. However, other authors [23, 22]
propose using a different number of kangaroos and refer to techniques such as the “Four
kangaroo method”. It would be interesting to see if these methods can be combined with
our improvements to achieve even higher speedups.

Finally, another point where further analysis can be carried out is in the paralleliza-
tion of the algorithm. Our parallelization technique has tried to be as simple and non-
intrusive as possible, using the Python3 multiprocessing package. Our results reveal a
speedup of approximately

√
p, where p is the number of processors used, rather than a

speedup of p as achieved by other authors such as [19].

Although, as discussed in chapter 7, Oorschot and Wiener [18] seem to attribute this
linear acceleration to the use of the distinguished points technique, it is still interesting to
try to parallelize this algorithm with more professional tools such as OpenMP or MPI.
This type of utility would allow the kangaroo method to be run on parallel computing
clusters where more significant problems could be solved in reasonable times if such
parallelization is satisfactory.

In conclusion, we have conducted exhaustive experimentation on Pollard’s Kangaroo
Algorithm throughout this work. However, as usual in research, there are always more
techniques and methods that can be explored to try to achieve even better results.
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APPENDIX A

Tracing the parallel algorithm

In this appendix, the process of initialisation and search for the solution performed in the
parallel versions of the algorithm is represented in a user-friendly and visual way.

In this case, we are going to solve a 20-bit problem although, for the sake of simplifica-
tion, the hyperparameters are slightly smaller than they would actually be if we execute
the algorithm:

αk mod p = β where


α = 1 015 436
p = 561 343
β = 410 105

and


σ = 100
µ = 4
λ = 14

Thus, the problem could be represented as follows: the solution k lies somewhere on
the number line defined by the generator’s order, i.e., between one and p− 1. The security
of the discrete logarithm is based on the fact that we do not have any kind of information
to orient our search. The modulo function brings chaotic behaviour to exponentiation.
Therefore, the solution k can fall anywhere on the number line.

1 561 342

For this problem, we could directly apply the first version of Pollard’s Kangaroo Algo-
rithm developed, with a = 1 and b = 561 342. However, we would be exploiting neither
the acceleration of the algorithm design with a Wild Jumps Database nor the full computa-
tional power of a multi-core machine.

Therefore, let us look at the steps that would be performed by the fourth and fifth
version of the algorithm, which employs a coordinator-worker design to parallelise the
sequential algorithm with the Wild Jumps Database.

For this example, let us assume that the machine has four physical cores, providing
eight execution threads (th = 8). One of them is designated as the coordinator, and the
rest will be workers that will apply the kangaroo method.
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62 Tracing the parallel algorithm

Thus, the first thing the coordinator does is divide the number line into th− 1 equal
intervals and communicate the splitting to each sub-process:

1 561 342

P1 P2 P3 P4 P5 P6 P7

In turn, each thread, when it receives its interval, divides it into sections, as many as
necessary, so that each section has a size of approximately 2λ elements:

1 16 383 32 767 49 151 65 535 81 919

P1

Section 1 Section 2 Section 3 Section 4 Section 5

As can be seen, in this example, the interval [ 1, 81 919 ] is assigned to the first sub-
process, which will divide it into 5 sections of 2λ = 214 = 16 384 elements.

These sections will be the minimum search unit with which we are going to operate
when solving the discrete logarithm. This means that the algorithm with the Wild Jumps
Database will be applied directly to each section. For example, section 1 will be executed
with a = 1 and b = 16383.

1 16 383 32 767 49 151 65 535 81 919

P1

kangaroo

a = 1

b = 16 383

kangaroo

a = 16 384

b = 32 767

kangaroo

a = 32 768

b = 49 151

kangaroo

a = 49 152

b = 65 535

kangaroo

a = 65 536

b = 81 919

In fact, when implementing this strategy, instead of indicating each interval and then having the worker
divide it into sections, the coordinator directly divides the entire real line into sections of 2λ elements and
simply tells each process which is its first section and how many sections correspond to it. It is equivalent
but avoids rounding problems since in the worst case the last processes will simply have some sections less
than the others.
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Once the distribution of intervals and sections is decided, the coordinator lets each
worker do its tasks and waits to receive the results, as can be seen in algorithms 6.4 and
6.5.

This way, all workers will apply the algorithm in parallel, starting to search in its
respective first sections. The following pictures illustrate this process:

1 561 342

P1 P2 P3 P4 P5 P6 P7

Searched = 0 %

1 561 342

P1 P2 P3 P4 P5 P6 P7

Searched = 20 %

1 561 342

P1 P2 P3 P4 P5 P6 P7

Searched = 40 %

Drawing the solution to this particular example, we see that it should be found by the
fourth thread, specifically by searching in its third section.

1 561 342

k = 294 150

P1 P2 P3 P4 P5 P6 P7

Searched = 40 %
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1 561 342

k = 294 150

P1 P2 P3 P4 P5 P6 P7

Searched = 60 %

245 760 327 679262 143 278 527 294 911 311 295

k = 294 150

P4

kangaroo

a = 245 760

b = 262 143

kangaroo

a = 262 144

b = 278 527

kangaroo

a = 278 528

b = 294 911

This is indeed the case. Once k is found, it is sent to the coordinator to notify the rest
of the processes that they must stop the search. Then, k is returned as the solution:

αk mod p = β where


α = 1 015 436
p = 561 343
β = 410 105

=⇒ k = 294 150

1 015 436294 150 mod 561 343 = 410 105



APPENDIX B

Sustainable Development Goals

B.1 Degree of relationship between the work and the United
Nations Sustainable Development Goals

Sustainable Development Goals (SDGs) High Medium Low Not
applicable

SDG 1. No Poverty. X

SDG 2. Zero Hunger. X

SDG 3. Good Health and Well-Being. X

SDG 4. Quality Education. X

SDG 5. Gender Equality. X

SDG 6. Clean Water and Sanitation. X

SDG 7. Affordable and Clean Energy. X

SDG 8. Decent Work and Economic Growth. X

SDG 9. Industry, Innovation, and Infrastructure. X

SDG 10. Reduced Inequalities. X

SDG 11. Sustainable Cities and Communities. X

SDG 12. Responsible Consumption and Production. X

SDG 13. Climate Action. X

SDG 14. Life Below Water. X

SDG 15. Life on Land. X

SDG 16. Peace, Justice and Strong Institutions. X

SDG 17. Partnerships for the Goals. X
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B.2 Discussion on the relationship between the work and the
United Nations Sustainable Development Goals

This work fits perfectly into the field of cryptography. In this sense, it is clear that most of
the United Nations Sustainable Development Goals related to poverty, inequalities, clean
water, or land and underwater ecosystems, among others, are far from the scope of this
work, and it is not appropriate to relate them to it. However, there are certain objectives
that can be related to the work developed, although possibly on a smaller scale than the
United Nations’ desired goals.

To begin with, we can relate this paper to SDG number nine: Industry, Innovation,
and Infrastructure. Information and communication technologies in general, and modern
cryptography in particular, have always played a vital role in industry and innovation,
since their inception in the 1960s and 1970s.

Throughout this work, we have presented a method and different improvements and
optimisations to solve the discrete logarithm problem. As discussed in chapter 4 regard-
ing its practical applications, this problem is vital in today’s public-key cryptography and
is used as a basis for designing secure cryptographic protocols.

In this sense, public-key cryptographic systems represent an essential qualitative im-
provement in the innovation and development of industry and commerce, bringing this
science into fields that are essential today, such as digital signatures and identification
systems. COVID-19 pandemic has highlighted the necessity of being able to identify our-
selves or sign documents securely and unequivocally, without the requirement of being
physically present.

From this perspective, we can also relate the work developed to Sustainable Devel-
opment Goals 8 and 11: Decent Work and Economic Growth and Sustainable Cities and Com-
munities. Digital signatures have clearly become one of the most widely used tools in the
automation of processes and in the digitisation of companies, institutions, governments,
hospitals, etc. In an increasingly urbanised world, where cities and metropolitan areas
are the main economic growth centres, such identification forms have become essential.
Some of the advantages we can relate to those SDGs are:

• They imply more speed in verifying information.

• They improve security in the exchange of sensitive information by allowing trust
in the sender.

• They help to avoid unnecessary travel.

• They can facilitate further cost savings for companies.

• They allow for a better quality of services provided by companies.

In general, such systems provide not only reliability and security but also help with
the economic growth of companies. They allow us to progress towards a more sustain-
able and environmentally friendly bureaucracy, reducing superfluous travel and exces-
sive use of paper.

ETS Enginyeria Informàtica
Camí de Vera, s/n, 46022, Vaència
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On the other hand, a SDG closely related to the primary motivation of this project
is number four: Quality Education. One of the best ways to evaluate the security of a
cryptographic system is to make the details of the system generally open to everyone.
Making this information public facilitates someone discovering a weakness and notifying
the cryptographic community. The more information is made public, the easier it is to
find vulnerabilities, thereby allowing protocols to be improved.

Similarly, the more imaginative ways of attacking the mathematical problems on
which cryptographic protocols rely are proposed by the scientific world, the better pre-
pared society in general and students of cryptography in particular will be in the future.
In this work, we have tried to offer our contribution to this end, analysing new efficient
ways of implementing Pollard’s Kangaroo Algorithm.

As mentioned in chapters 1 and 8, analysing algorithms designed years ago is still
interesting from an educational and analytical point of view. The main reason for this is
that, as time goes by, technology advances, and algorithms that were not applicable be-
fore, become applicable thanks to improvements in hardware and computational power.

Finally, we must also consider the so-called “right to encrypt” and its intimate relation-
ship with SDG 16: Peace, Justice and Strong Institutions. Historically, the ability to encrypt
a message to ensure its inviolability has been a privilege of states. Encryption and de-
cryption systems were generally not accessible to the public. On the other hand, citizens
had not felt any need to encrypt their communications either. With the development of
ICTs, this started to change as a large part of our lives has become online. Thus, the need
to use cryptographic methods to safeguard our privacy appeared.

Understanding encryption as a good concept, not as a form of secrecy, is essential.
Cryptography is not a resource for criminals to prevent their conspiracies from being
discovered. Cryptography is the science that allows us to ensure that our digital commu-
nications are secure and, therefore, that the integrity of our personal data and our privacy
are being respected.

In this sense, the relationship between this work and SDG 16 can be appreciated.
Ensuring that the mathematical foundations of cryptographic protocols remain solid de-
spite the evolution of technology is crucial. Thus, we can be confident that no institution
or government can access our encrypted data. Guaranteeing the right to privacy is and
must remain a fundamental principle in our society.

This fact is so critical that, for some time now, the United Nations has been urged
to modify the Universal Declaration of Human Rights. The proposal is to add to its 30
articles the following:

“ Article 31: Everyone has the right to protect his or her communications and
data in digital format by using cryptographic methods. Such cryptographic
methods must be freely accessible and secure, i.e. not containing backdoors or
similar mechanisms that allow third parties to access the encrypted content.

David Casacuberta [35] ”
ETS Enginyeria Informàtica
Camí de Vera, s/n, 46022, Vaència
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es



In conclusion, we have seen the importance of this type of work and its relationship
with different Sustainable Development Goals. Encouraging the study of current cryp-
tographic protocols, reinventing them and checking that they are still secure is essential
to maintain awareness of their security. By doing so, we increase their credibility and
our confidence in them. This trust is key to the continued prosperity of technology in
particular and our society in general.
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