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Backflow Air and Pressure Analysis in Emptying Pipeline Containing 

Entrapped Air Pocket 

The prediction of the pressure inside the air pocket in water pipelines has been the 

topic for a lot of research works. Several aspects in this field have been discussed, 

such as the filling and the emptying procedures. The emptying process can affect 

the safety and the efficiency of water systems. Current research presents an 

analysis of the emptying process using experimental and computational results. 

The phenomenon is simulated using the two-dimensional computational fluid 

dynamics (2D CFD) and the one-dimensional mathematical (1D) models. A 

backflow air analysis also is provided based on CFD simulations. The developed 

models show good ability in the prediction of the sub-atmospheric pressure and the 

flow velocity in the system. In most of the cases, the 1D and 2D CFD models show 

similar performance in the prediction of the pressure and the velocity results. The 

backflow air development can be accurately explained using the CFD model.  

Keywords: Emptying process; Transient two-phase flow; Backflow air 

Introduction 

The air pocket presence in pipe systems is a practical problem due to the lack of design 

and operation knowledge or equipment malfunction. For those reasons, designers 

frequently neglect the air pocket existence that may lead to harmful consequences 

(Besharat et al. 2016a). This application occurs in the majority of cases in water 

distribution networks, firefighting systems, fluid-transport pipelines, storm-water, 

drainage and sewage systems, tunnels, syphons and urban water networks (Pozos et al. 

2010; Laanearu et al. 2012). The air can appear in pipelines due to pressure drop or 

insufficient submergence in the water intakes. The filling of pipe systems can also be 

another source of the air accumulation. During this process, if the air is not removed 

completely, a volume of air will accumulate at downstream. The entrapped air in a 

pipeline can cause different problems including sub-atmospheric pressure appearance, 

disruption of the flow regime, reduction of the pump and turbine efficiency, fatigue or 



rupture of pipe materials and pipeline structures, changes in fluid properties, faults in 

instrumentation readings and environmental contamination (Besharat et al. 2016a; 

Ramezani et al. 2016; Escarameia 2007; Laanearu et al. 2015). Bowker et al. (1992) 

reported the influence of the air over the material of a pipe due to the erosion effect. The 

effect of an air pocket on the head loss was studied by Escarameia (2007) showing a loss 

of 35% for the analysed system which induces higher pump load leading to higher 

electricity consumption and depreciation. An air pocket decreases the effective cross-

section of a pipe and the carrying capacity called air binding that may cause unexpected 

pressure surges (Richards 1962; Edmunds 1979; Besharat et al. 2017). Some aspects of 

the entrapped air in water filling pipelines have been studied using CFD models such as 

studying the filling process in a single pipe using 3D CFD simulation (Martins et al. 

2017), using the 2D and 3D CFD models for rapid filling cases (Zhou et al. 2011), and 

understanding the dynamic behaviour of trapped air pocket in filling case using a 3D CFD 

model have been studied before (Zhou et al. 2018). 

An emptying process with no admitted air at upstream is subject to a slow down-

surge wave which may create a very low sub-atmospheric pressure value. The sub-

atmospheric pressure in the pipe system can cause a suction effect in the defective joints 

or valves leading the entrance of the air into the pipe system (Wisner et al. 1975) or, 

eventually, inducing the buckling or crushing of the pipe (Coronado-Hernández et al. 

2017). A down-surge wave situation can be controlled by means of different methods 

such as air vessel, surge tank, bypass, in-line polymeric short-section and the air valve 

(Triki, 2017). However, a common solution for removing air and/or to avoid the sub-

atmospheric pressure occurrence is installing air valves in high points of the pipe profile. 

An air valve conveys air at the atmospheric pressure into the pipeline or reliefs the 

accumulated air to regulate the pressure. Understanding the dynamic behaviour of the air 



and the backflow air phenomenon will facilitate the selection and design of a proper 

controlling method.  

There are few studies about the emptying developments focusing on the 

complexity of the phenomenon in practical applications with irregular profiles (Laanearu 

et al. 2012; Tijsseling et al. 2016). The complex nature of the air-water tail, the movement 

of the air pocket and the air intrusion and oscillation are some topics that previously have 

been studied both experimentally and numerically by other researchers in emptying of 

simple systems (Zukoski 1966; Benjamin 1968; Vasconcelos and Wright 2008; Laanearu 

et al. 2015). The current study took advantage of a well-equipped experimental apparatus 

to measure the pressure in an air pocket and the flow velocity in the pipe system. The 

study focused on the two-phase emptying process with various air pocket sizes and valve 

actuation situations. It is essential to have the ability to accurately calculate the low-

pressure conditions and understand the relation between backflow air and pressure 

changes for safety reasons and design rules definition. Hence, numerical simulations 

using the one-dimensional mathematical (1D) and the two-dimensional computational 

fluid dynamic (2D CFD) models were developed to show the ability of these methods for 

calculating the major parameters. 

In general, the main objectives of the current research are to understand the 

dynamic behaviour of the air pocket during the emptying process, to examine the 

accuracy of provided models in prediction of major parameters and also to understand the 

backflow air effect on the emptying process. It is observed that the water columns 

pressurized initially but during the emptying process, a free surface flow is created with 

a distinct air-water interface. A stratified air-water tail is determined similar to the 

previous study developed by Laanearu et al. (2012). 



Methodology 

An undulating experimental apparatus made of transparent PVC pipes with a nominal 

diameter of 63 mm and equipped with two ball valves located at the downstream of the 

pipes as shown in Figure 1 was used to examine the drainage process. To test the two-

phase emptying condition, a confined air pocket was located at the highest level of the 

profile before starting of each test. The water column is under static pressure initially. 

The drainage takes place by the partial and total opening of the ball valves simultaneously 

creating a down-surge wave which propagates towards the pipe ends. The ball valves 

actuation was carried out manually. As shown in Table 1, the length of air pockets in left 

and right pipe branches can be either equal or unequal. Different tests were carried out by 

changing the air pocket size and the valve opening situation namely partial or total 

opening as in Table 1. The valve is opened by 6% in the partial opening tests. The volume 

fraction ratio (VFR) for each test is provided in Table 1 as the volume of air over the 

volume of the pipeline. The measurements of pressure in the highest point of the pipeline 

profile and the flow velocity in horizontal pipes were carried out using a pressure 

transducer and an ultrasonic doppler velocimetry (UDV). The installed pressure 

transducer measures the absolute pressure up to 25 bar. The maximum measurement error 

has been reported 0.5% by the manufacturer. The output signal from the pressure 

transducers was an analogue signal with an electric current between 4 to 20 mA. After 

amplifying the signals, they were collected by an electronic oscilloscope to process the 

pressure signals, convert them to digital signals, remove the noises and finally record 

them on the computer. Also, the UDV transmits a short emission of ultrasound, which 

travels along the pipe at an angle of 20o with the vertical axis. All the velocity 

measurements took place in the specific points at the downstream of the pipeline as shown 

in Figure 1. Measurements of each test carried out twice for more confidence. For 



experiments with suspicious data, more tests were carried out to verify the measurements. 

An average experimental data was calculated based on all the measurements and used for 

comparison with numerical data. Calculation of experimental data was done by a 1D 

mathematical model and a 2D CFD model.  

1D Model 

The one-dimensional model developed by Coronado-Hernández et al. (2018) for 

undulating profiles is used to simulate the emptying process. The mathematical model is 

based on a rigid water column formulation (RWCF) taking a moving air-water interface 

using a polytropic expression to simulate an entrapped air pocket (León et al. 2010; 

Martins et al. 2015).  The RWCF considers a higher elasticity of entrapped air than the 

elasticity of both water and pipe. Zhou et al. (2013), Zhou et al. (2002) and Izquierdo et 

al. (1999) demonstrated that elastic water hammer formulations bring similar solutions 

compared to RWCF when an air pocket is trapped. Neglecting water and pipe elasticity, 

the momentum equation is expressed as: 

2* *
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v T w T ww ww a atm

w w w w
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dt L L D Lρ

− ∆
= + − −                           (1) 

in which 
wv  is the water velocity, t is the temporal coordinate, 

*

ap  is the air pocket 

absolute pressure, 
*

atmp  is the atmospheric pressure, 
wρ  is the water density, 

wL  is the 

length of the water column, g is the gravity acceleration, z∆  is the difference elevation 

of the water column ends, f is the Darcy-Weisbach friction coefficient, D is the internal 

pipe diameter, 
vR  is the resistance coefficient of the drain valve, A is the cross-sectional 

area and ,T wQ  is the total water flow to be drained by a drain valve. 

A piston flow model was considered to simulate a moving air-water interface.  
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A polytropic expression is used to simulate the air pocket behaviour using the 

polytropic equation, i.e., 
* n

a ap cte∀ = , which relates the air pocket pressure with the air 

volume (
n

a∀ ). The polytropic exponent or polytropic index (n) can vary from 1 for the 

isothermal process to 1.4 for adiabatic process depending on temperature change and heat 

transfer (Besharat and Ramos 2015). An algebraic-differential system (ADS) describes 

the entire process, which is composed by the momentum equation, a moving interface 

air-water position, and the polytropic model. The resolution of the ADS gives the 

information of the hydraulic variables (air pocket pressure, water velocity, and length of 

the water column). To solve the ADS a constant friction coefficient was considered 

(f=0.018) with a non-variable polytropic coefficient of n=1.1. The minor loss coefficients 

were calibrated based on the experiments. The Simulink tool in Matlab was used to solve 

the algebraic-differential equations system.  

2D CFD Model 

The accuracy and more comprehensive results of CFD simulations attract 

researchers to use them rather than 1D models. The selection of appropriate simulation 

models, such as a pertinent turbulence model, will increase the efficiency and accuracy 

of CFD simulations. Turbulence models may be categorized as low-Reynolds and high-

Reynolds models (Cebeci, 2004). The low-Reynolds models aim to identify laminar sub-

layers needing very low-height cells near the wall and high calculation load. For that 

reason, the high-Reynolds models are commonly used. There are many high-Reynolds 

turbulence models, ranging from one-equation models to robust two-equation models. As 

a two-equation model, the k-ε model is used frequently due to good performance, 

acceptable accuracy and low computational time. This model uses two transport equations 



for turbulence kinetic energy (k) and its dissipation rate (ε). The transport equation of k is 

derived from exact formulations, while the dissipation rate is derived from an empirical 

formulation (Launder and Spalding, 1972; Cebeci, 2004) as: 

i t
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in which t
µ  is the turbulent viscosity given by: 

2  
t

k
Cµµ ρ

ε
=                                                                    (5) 

Rest of parameters are constants defined from experimental results as 0.09Cµ = ,  

1
C 1.44ε = , 

2
C 1.92ε = , 1.00kσ =  and 1.30εσ =  (Wilcox, 2006). However, 

implementation of the two-equation turbulence models may lead to unsuitable results near 

the wall. This flaw comes from the inability of the model in the calculation of constant, 

B accurately in the law of the wall equation, i.e., [ ]* *ln( / ) /u u u y Bυ κ= +  whereκ  and 

B are constants (Besharat et al. 2016b). To enhance the accuracy, wall functions or 

enhanced wall treatment (EWT) method may be used. The EWT method uses a two-layer 

approach which divides the near wall domain into two layers namely viscous sub-layer 

and turbulent sub-layer for calculating the ε  and the t
µ  in the near wall domain. The 

EWT method combines linear and the logarithmic law of the wall by a function from 

Kader (1993) which uses a blending function as 40.01( ) / (1 5 )y y+ +Γ = − +  to achieve a 

single wall law for entire near wall domain in the momentum and energy equations as 

shown in Equation 6 (ANSYS FLUENT R19.0). 

1

  lam turu e u e u
+ Γ + +Γ= +                                                                     (6) 



The ANSYS Fluent R19.0 academic was used as the CFD simulation tool. A 

transient pressure-based solver resolved the coupled equations. This solver is able to 

handle the coupled equations between pressure, velocity and density in the compressible 

flows (Wang et al. 2016). The volume of fluid (VOF) multiphase model with the explicit 

formulation was implemented for discretization. The VOF model for determining the 

deformations of the interface is used extensively due to simplicity and low required 

computational load (Besharat et al. 2016b). Two components of air and water were 

considered in this simulation as separate fluids in the two-phase simulation.  

In order to simulate the valve actuation in the CFD model, a moving cell zone 

condition was defined using the sliding mesh method and a user-defined function (UDF) 

with the desired angular velocity of each test. All boundary conditions except the outlet 

ends of the system are non-slip wall boundary conditions. For the two outlet ends, the 

pressure outlet boundary was defined. The CFD model takes advantage of the pressure 

implicit with the splitting of operators (PISO) method for coupling the pressure-velocity 

formulations. The spatial discretization was carried out using a finite volume approach. 

The pressure staggering option (PRESTO) discretization scheme is used for the pressure, 

while for other spatial discretization a second order upwind scheme is adopted. For the 

interface tracking method, the compressive scheme was used. This scheme is a second 

order reconstruction scheme based on a slope limiter value (ANSYS FLUENT R19.0).  

f d dφ φ β φ= +  ∇                                                                     (7) 

where the fφ  is the face VOF value, 
dφ  is the donor cell VOF value, β  is the slope 

limiter value between 0 and 2 and 
dφ∇  is the donor cell VOF gradient value.  

All the mentioned mesh information was selected based on the previous research 

and mesh independent analysis in a similar system (Besharat et al. 2016b). The mesh for 

the CFD model consists of 108,919 cells in all the simulations having the minimum and 



maximum face areas of 0.0001m2 and 0.006 m2, respectively. A triangular unstructured 

mesh was considered for the main body of the model with 10 rectangular inflation layers 

at the near-wall zone. The simulation was executed on a desktop computer: Intel(R) 

Core(TM) i7-4790 CPU @ 3.60GHz with an installed memory of 16 GB with a time step 

equal to 0.001 s. 

Comparison of Results and Emptying Patterns 

The prediction of pressure and velocity values, as two important parameters for pipe 

operation, is fulfilled in both 1D and 2D CFD models and the results are compared to 

experimental observations. All the results discussed in the coming lines are presented 

until 3 s of the simulation when all the major changes occur. Figure 2 shows the changes 

in pressure during the emptying process demonstrating different variation trends. Also, 

the root mean square error (RMSE) for all the pressure simulations have been calculated 

as 
2 1/2

1

RMSE [ (exp num ) / ]
n

i i

i

n
=

= −∑ where expi and numi are experimental and numerical 

data respectively and n is the data size. RMSEs are presented in Table 2. The RMSEs 

declare a close performance of the 1D and 2D CFD models. Based on the emptying 

behaviour, the tests are categorized into three patterns: 

• Pattern 1; equal left and right air pocket lengths with a partial valve opening (i.e., 

tests 1, 2 and 3). The valve opening percentage is very small, so there is a low and 

uniform change at the air-water interface. A very slow but constant descending of 

water level occurs. No backflow air occurs and the pressure is changing gradually 

with no oscillation. The results from 2D CFD simulations are very close to those 

from the 1D model, both presenting good accordance with the measured data 

(Figure 2 a, b and c). 



• Pattern 2; equal left and right air pocket lengths with a total valve opening (i.e., 

tests 4, 5 and 6). In this pattern, the air-water interface is oscillating during the 

emptying process considerably. For low VFR case (test 4), the pressure is highly 

oscillating ending up with fast dissipation (Figure 2d) as the pressure amplitude 

for each wavelength proves by showing bigger changes when compared to other 

cases. In this case, the 2D CFD simulation predicts the pressure in first concavity 

higher than the experimental value. However, it predicts the pressure trend better 

than the 1D model. The wavelength for test 4 is considerably smaller when 

compared to tests with larger air pockets. Accordingly, increasing the air pocket 

size in pattern 2 increases the period and decreases the amplitude of oscillating 

pressure wave. Both models are able to predict the pressure measurements 

properly as shown in Figure 2 e and f. 

• Pattern 3, unequal left and right air pocket lengths with a total valve opening (i.e., 

tests 7 and 8). During the emptying, in the longer air pocket branch, the water 

level ascends steadily and the water level in the shorter air pocket branch starts a 

uniform descending due to the higher applied gravity force. The air pocket reaches 

the highest expansion state at time 0.40 s and a reverse flow takes place in longer 

air pocket branch immediately after that. Following the reverse flow occurrence, 

the air intrudes from the downstream of the longer air pocket branch at t=0.50 s. 

This tendency continues until arising an equilibrium between inertia and gravity 

forces. From this point on, the gravity force in the longer air pocket branch 

becomes higher and then the movement starts in the opposite direction, i.e., 

ascending the water level in the shorter air pocket branch and descending in the 

longer air pocket branch. The pressure variation in pattern 3 involves a faster 

dissipation as shown in Figure 2 g and h. Due to the air-water interface movement, 



the pressure simulation is more challenging and the pressure predictions after time 

1.50 s are not very accurate. 

The velocity has been measured at a distance of 1 m from pipe ends using the 

UDV. The measurement of the flow velocity inside the pipe was not possible in the 

pattern 1 due to the very low velocities. The velocity measurements were carried out in 

the right branch for pattern 2 and in both right and left branches for pattern 3. Both 2D 

CFD and 1D models are able to predict the general trend of the mean velocity variations 

during the time (Figure 3). However, the simulation of the experimental mean velocity 

values is not accurate. This lack may result from the difficulty to measure the velocity 

with the UDV in existing two-phase transient conditions with the backflow air 

occurrence. The amount of backflow air intrusion directly affects the accuracy of the 

measurements. For that reason, the simulation results are better in Tests 4 and 5, Figure 

3 when less backflow air intrudes. Higher backflow air intrusion in Tests 7 and 8, Figure 

3 leads to bigger difference between the measured and calculated data. Since the 1D 

model is not able to predict the backflow air accurately, a big difference is observed as 

well between the 1D and 2D CFD calculated data.   

Backflow Air Analysis 

The backflow air prediction provides significant information towards understanding the 

emptying process. In pattern 1, no backflow air has been observed due to partial opening 

and very slow valve actuation. For patterns 2 and 3, the air volume fraction contour is 

presented in Figure 4 at time 0.50 s showing the backflow air occurrences and the flow 

velocity vectors. For all the cases, the backflow air appears soon after opening the valve. 

Referring to Figure 2d (test 4), the lower pressure has been already attained at time 0.40 

s prior to starting of air intrusion at time 0.50 s. In fact, the air pocket for test 4 has faced 



the maximum expansion at time 0.40 s and after that despite opening the valve more, a 

contraction starts in the air pocket which leads to a reverse flow. Immediately after the 

reverse flow, the air intrusion starts (Figure 4a). For higher VFRs at pattern 2 (tests 5 and 

6), the reverse flow and backflow air occurrences are delayed. However, at time 3 s in 

Figure 5, the same backflow air intrusion occurred for tests 4, 5 and 6 related to pattern 2 

leading to the formation of an air binding. 

For pattern 3 with different left and right air pocket lengths, the air starts intruding 

from the longer air pocket branch. A reverse flow immediately emerges in the branch 

with longer air pocket size (the right branch in tests 7 and 8, Figure 4d and e). In the 

branch with shorter air pocket length (longer water column), the emptying occurs sooner 

due to higher gravity force. Also, the volume of backflow air in pattern 3 is mainly greater 

than pattern 2 at the same time as Figures 4 and 5 demonstrate. At pattern 2, dominant 

two-phase flow patterns of stratified flow or wave flow occur (Figures 4 and 5) in the 

horizontal pipes during the emptying. Also, the backflow air volume in test 8 with highest 

VFR is more than that for test 7.  

Figure 6 shows the air volume fraction of reverse flow in the right branch from 

time 0.50 s to 3.00 s. For all the tests, the majority of the pipe cross section is occupied 

by the air forming an air binding phenomenon. The backflow air grows in the upstream 

direction and upon reaching upstream of the valve, a stratified flow takes place in the 

downstream region. For pattern 2 (including tests 4, 5 and 6), increasing the VFR 

decreases the volume of the backflow air at the beginning of the emptying. But, for the 

rest of the process, the backflow air amount remains constant. For pattern 3 (including 

tests 7 and 8), increasing the VFR leads to higher air intrusion.  

The worst sub-atmospheric pressures for tests 5 and 8 with very close VFR values 

are almost the same due to the fact that the pressure variation is mostly a function of VFR 



rather than the situation of the air pocket (i.e., equal or unequal left and right lengths). 

However, the backflow air is much higher in test 8 as shown in Figures 4, 5 and 6, which 

is a result of very high air-water interface movement due to different initial levels. These 

results prove that the worst sub-atmospheric pressure is mainly dependent on the VFR 

value rather than the backflow air magnitude or the situation of the air pocket. However, 

for equal VFRs, a higher backflow air leads to higher peak pressure which is evident 

comparing tests 5 and 8. The backflow air intrusion can increase the peak pressure 

considerably as it has occurred in test 7 when compared to test 4. The effect of the 

backflow air intrusion in a higher VFR test (test 7) has created a peak pressure equal to a 

low VFR test (test 4) which was unexpected.  

Conclusions 

The proposed 1D mathematical and 2D CFD models were used to simulate the pressure 

and velocity changes during an emptying process and detect the backflow air behaviour. 

Both models were able to adequately predict the pressure and velocity oscillations during 

the initial vibrations mostly until 1.5 s. The RMSEs presented in Table 2 show very close 

performance of both models. In general, the 1D model seems acting slightly better only 

in the prediction of pressure variations but impossible to show the air-water interface and 

the backflow air entrance. It was revealed that for a 6% partial opening percentage of the 

valve (pattern 1), the drainage occurs confidently with no backflow air until the end of 

the emptying process. So, no fluctuation in the air-water interface occurs and the pressure 

remains in a safe limit with a uniform change. For equal left and right air pocket sizes 

with a total valve opening (pattern 2), the backflow air entrance is notable which 

decreases the drainage capacity and, as a result, causes considerable fluctuation in the air-

water interface. In this case, the pressure drops to a quite low sub-atmospheric value. For 

unequal left and right air pocket branches (pattern 3), the air entrance rate is much higher 



leading to robust fluctuations in the air-water interface and the pressure dampens faster. 

In this case, the backflow air amounts in two branches are not equal and more air enters 

the pipeline from the branch with longer air pocket size.  

Results show that the sub-atmospheric pressure magnitude in the first concavity 

is not highly dependent on the backflow air amount. The sub-atmospheric pressure 

depends mostly on the air pocket size. But the peak pressure in the first pressure jump is 

dependent on the backflow air magnitude. The bigger the backflow air is the higher peak 

pressure occurs in the first pressure jump. 

The worst sub-atmospheric pressure is related to the lowest VFR and total opening 

of the valve. In this case, the sub-atmospheric pressure takes place when the valve is not 

opened considerably and no backflow air exists yet. So, for very low VFRs (very small 

air pockets), the emptying must be done with careful attention.  

Authors suggest studying the effect of backflow air on emptying process in 

different pipe profiles for future works. Also, it would be valuable if the emptying process 

is evaluated in a controlled condition to hinder backflow air and compare results.  
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Table 1. Experimental tests specifications 

 

Table 2. RMSEs for simulation of the pressure data 

 

Figure 1. Real physical and 2D CFD model; (a) model and mesh; (b) an open valve; (c) 

a partially open valve; (d) a closed valve 

 

Figure 2. Pressure change during pattern 1 (a, b and c), pattern 2 (d, e and f) and pattern 

3 (g and h) 

 

Figure 3. Flow velocity in the pipe for pattern 2 (a and b) and pattern 3 (c and d) 

 

Figure 4. Air volume fraction contour and velocity vectors for different tests of patterns 

2 and 3 at time 0.50 s 

 

Figure 5. Air volume fraction contour and velocity vectors for different tests of patterns 

2 and 3 at time 3.00 s 

 

Figure 6. Air volume fraction development during backflow air action 

 

 

 

 

 


